

ETAF: An Extended Trust Antecedents Framework for Trust Prediction

Guibing Guo, Jie Zhang, Daniel Thalmann Neil Yorke-Smith*

School of Computer Engineering, NTU, Singapore *American University of Beirut, Lebanon; and University of Cambridge, UK

Introduction

- Trust in e-Commerce
 - Recommender systems
 - Security systems
 - Composite online services
- Trust types
 - Explicit trust
 - Epinions (WOT), ciao.co.uk (circle of trust)
 - Implicit trust
 - Trust labels, trust values

Introduction

- Trust inference
 - Social connections
 - User behaviors

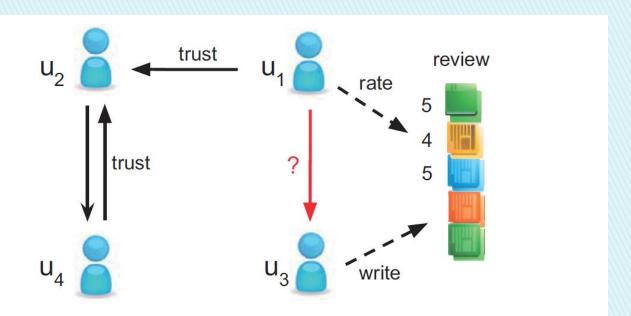


Fig. 1. A social rating network where users specify others as trustworthy and write (or rate) a number of reviews. Solid lines indicate the social trust relationships while dashed lines mean user behaviors (rating and writing).

Introduction

- Our Contributions
 - ETAF: extending TAF w global trust
 - Formulation of ETAF
 - No social connections exist
 - Experimental evaluation
 - Epinions, CiaoDVDs*
 - All, cold start, warm start

* The data set is available at http://www.librec.net/datasets.html

Outline

Content

Related Work

- Trust prediction via trust connections
 - Guha et al. (2004): trust propagation
 - Golbeck (2005): TidalTrust
 - Massa & Avesani (2007): MoleTrust
 - Matrix factorization techniques:
 - Tang et al. (2012): mTrust
 - Yao et al. (2013): MATRI

Drawbacks

- Explicit trust required
- Sparse trust problem

Related Work

- Trust prediction via user interactions
 - Liu et al. (2008): classification approach
 - Ma et al. (2009): user activity important
 - Matsuo & Yamamoto (2009)
 - Bidirectional trust
 - Product brand important
 - Nguyen et al. (2010): reciprocal trust
- Drawbacks
 - Hand-crafted features
 - Trust labels only

Related Work

- Most relevant research
 - Guo et al. (2014)
 - Rating-based trust prediction
 - Indirect interactions not suffice
 - Nguyen et al. (2009): TAF
 - Prediction by ratings on item reviews
 - Local trustworthiness only, explicit trust needed
 - Kim & Phalak (2012): EPT
 - Both global and local expertise
 - Benevolence, integrity ignored

What is trust?

Willingness of a party to be vulnerable to the actions of another party based on the expectation that the other will perform a particular action important to the trustor, irrespective of the ability to monitor or control that other party.

By Mayer et al. (1995)

Trust Antecedents Framework (TAF)

▶ TAF Framework

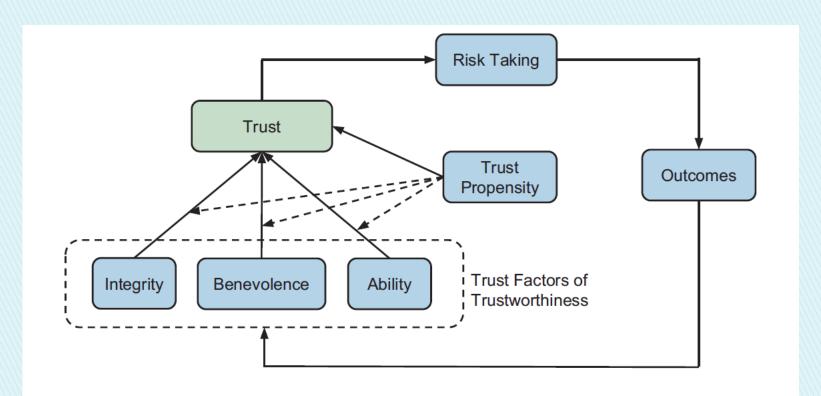


Fig. 2. Trust Antecedents Framework (TAF) including a number of trust factors, namely integrity, benevolence, ability and trust propensity.

Trust Antecedents Framework (TAF)

- Ability
 - The expertise of performing an action
- Benevolence
 - The degree of doing good to the trustor
- Integrity
 - The consistency of adhering to moral norms
- Trust propensity
 - The degree of tending to trust others.

Extended Trust Antecedents Framework (ETAF)

ETAF model

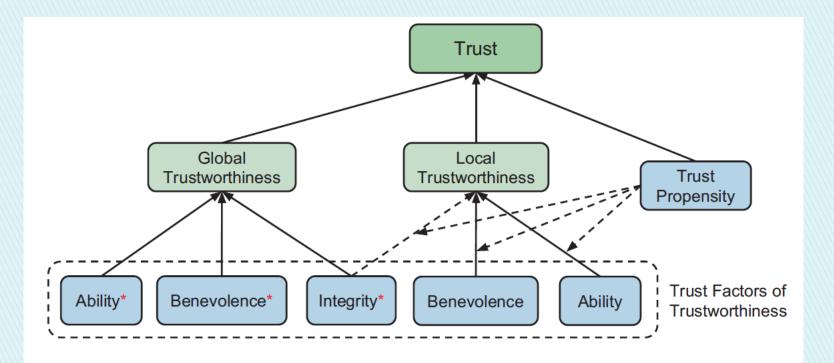


Fig. 3. Extended Trust Antecedents Framework (ETAF). Asterisks denote the global formalization of a trust factor; other factors are the local formalization of trust factors. Dashed lines indicate weak influence of a trust factor on the targets; solid lines strong influence.

- Ability*
 - Review quality

$$q_{i} = w(|U_{i,p}|) \cdot \frac{\sum_{v \in U_{i,p}} ab_{v}^{r} \cdot r_{v,i,p} (1 - \beta l_{v,p})}{\sum_{v \in U_{i,p}} ab_{v}^{r}}, \quad (1)$$

Local Leniency

$$l_{v,p} = \frac{1}{|I_{v,p}|} \sum_{i \in I_{v,p}} \frac{r_{v,i,p} - q_i}{r_{v,i,p}}.$$
 (3)

- $\mid l_{v,p} < 0$: user v tends to give lower ratings than review quality
- Similarly if $l_{v,p} > 0$ or $l_{v,p} = 0$

- Ability*
 - Rater ability

$$ab_v^r = w(|I_{v,\cdot}|) \left(1 - \frac{\sum_{i \in I_{v,\cdot}} |r_{v,i,a(i)} - q_i|}{|I_v|}\right), \tag{2}$$

Writer ability

$$ab_v^w = w(|I_{\cdot,v}|) \frac{\sum_{i \in I_{\cdot,v}} q_i}{|I_{\cdot,v}|},$$

Ability

$$ab_v^* = \gamma \cdot ab_v^w + (1 - \gamma) \cdot ab_v^r, \tag{4}$$

Ability*

```
Algorithm 1: Global Computation of Trust Factors
   Input: Users U, Reviews I, Ratings R
   Output: Users' rater ability ab_v^r, review quality q_i and
          local leniency l_{v,p}
1 randomly initialize rater ability ab_v^r and local leniency
   l_{v,p} with small values in (0,1);
2 while not converged do
      foreach i \in I do
          compute review quality q_i by Equation 1;
4
      foreach v \in U do
5
          update rater ability ab_v^r by Equation 2;
6
      foreach v \in U do
7
           foreach p \in U \setminus \{v\} do
8
              update local leniency l_{v,p} by Equation 3;
9
10 return ab_v^r, q_i, l_{v,p} for all users, reviews, and user pairs;
```


- Benevolence*
 - Global leniency

$$ln_v = \frac{1}{|U_{v,\cdot}|} \sum_{p \in U_{v,\cdot}} \frac{l_{v,p} - \min l}{\max l - \min l},$$

Normalization

$$be_v^* = \frac{ln_v - \min ln}{\max ln - \min ln},\tag{5}$$

- Integrity*
 - Social norms: ratings given by majority users
 - Rater integrity

$$in_{v}^{r} = \frac{w(|I_{v,\cdot}|)}{2} \left(1 + \frac{\sum_{i \in I_{v,\cdot}} (r_{v,i,a(i)} - \bar{r}_{v})(q_{i} - \bar{q})}{\sqrt{\sum_{i \in I_{v,\cdot}} (r_{v,i,a(i)} - \bar{r}_{v})^{2}} \sqrt{\sum_{i \in I_{v,\cdot}} (q_{i} - \bar{q})^{2}} \right),$$

Writer integrity

$$in_v^w = w(|I_{v,\cdot}|) \cdot \mu_v \cdot (1 - \sigma_v).$$

Integrity

$$in_v^* = \eta \cdot in_v^w + (1 - \eta) \cdot in_v^r, \tag{6}$$

- Ability
 - Average rating
 - Interaction intensity

$$ab_v^u = \psi(|I_{u,v}|; \alpha, \mu) \cdot \frac{\sum_{i \in I_{u,v}} r_{u,i,v}}{|I_{u,v}|},$$
 (7)

where

$$\psi(x;\alpha,\mu) = \frac{1}{1 + e^{-\alpha(x-\mu)}},$$

Benevolence

$$be_v^u = \frac{l_{u,v} - \min l}{\max l - \min l}.$$
 (8)

Trust propensity

$$tp_u = ln_u$$
.

Personalized Trust

$$t_{u,v} = \left(\alpha \cdot lt_{v,u} + (1 - \alpha) \cdot gt_v\right) \cdot tp_u, \tag{9}$$

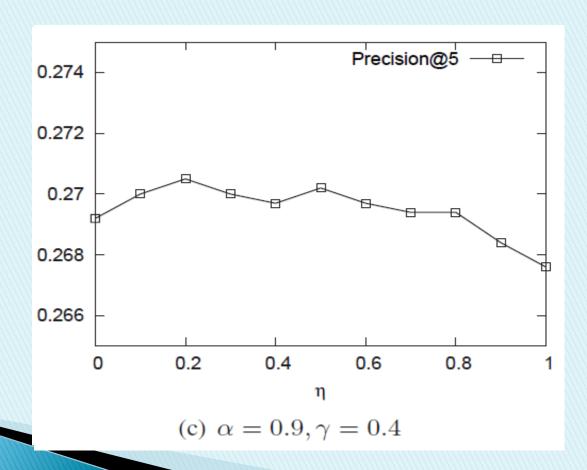
where

$$lt_{v,u} = ab_v^u \cdot be_v^u \cdot 0.5, \qquad gt_v = ab_v^* \cdot be_v^* \cdot in_v^*,$$

Datasets

CiaoDVDs & Epinions

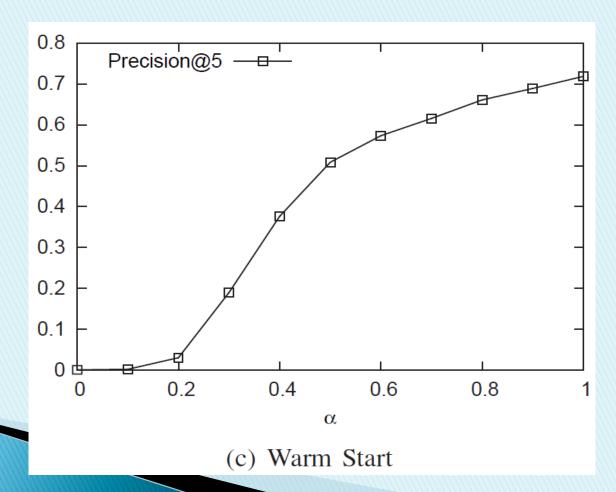
Features	CiaoDVDs	Epinions
Writers	920	6,167
Reviews	20,469	429,093
Reviews/Writer	22.25	69.58
Raters	3,951	6,028
Reviews	20,455	230,891
Review Ratings	641,810	6,512,699
Ratings/Rater	162.44	1080.41
Trustors	1,438	1,500
Trustees	4,299	6,156
Trust Ratings	40,133	11,310
Density	0.65%	0.12%
Direct Interactions	5.65	7.67
Total Users	4,658	7,551



Experimental Settings

- Baselines
 - ▶ EPT: Kim and Phalak (2012)
 - TAF: Nguyen et al. (2009)
 - ETAF: our approach
 - ETAF*: our approach wo global trust
- Views
 - All users, Cold start, Warm start
- Measures
 - Precision@5/10, Recall@5/10, MAP, NDCG, MRR

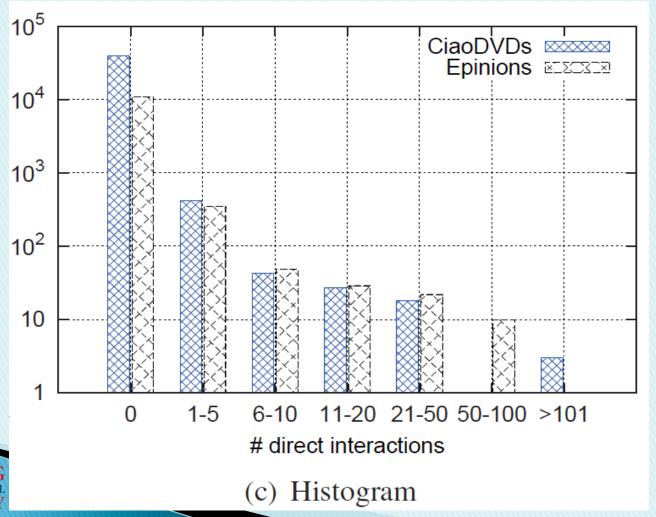
- Case Study 1: CiaoDVDs
 - Sensitivity analysis



Performance comparison

View	Method	Pre@5	Pre@10	Rec@5	Rec@10	MAP	NDCG	MRR
All	EPT	0.1270	0.1080	0.0236	0.0358	0.0247	0.0662	0.2577
Users	Improve	113%	102%	219%	185%	221%	147%	92%
	TAF	0.2529	0.2067	0.0733	0.0992	0.0757	0.1550	0.4614
	Improve	6.96%	5.66%	2.73%	2.82%	4.89%	5.55%	7.11%
	ETAF*	0.2577	0.2107	0.0702	0.0950	0.0733	0.1547	0.4678
	Improve	4.97%	3.65%	7.26%	7.37%	8.32%	5.75%	5.64%
	ETAF	0.2705	0.2184	0.0753	0.1020	0.0794	0.1636	0.4942
Cold	EPT	0.0072	0.0042	0.0142	0.0179	0.0116	0.0167	0.0314
Start	Improve	949%	883%	686%	552%	762%	696%	
	TAF	0.0663	0.0332	0.1057	0.1057	0.0968	0.1208	0.2509
	Improve	13.88%	24.40%	5.58%	10.41%	3.31%	10.02%	
	ETAF*	0.0663	0.0332	0.1057	0.1057	0.0973	0.1206	0.2487
	Improve	13.88%	24.40%	5.58%	10.41%	2.77%	10.20%	
	ETAF	0.0755	0.0413	0.1116	0.1167	0.1000	0.1329	0.2616
Warm	EPT	0.2849	0.2411	0.0327	0.0504	0.0397	0.1159	0.4785
Start	Improve	55.77%	52.26%	109%	91.07%	103%	66.70%	40.15%
	TAF	0.3836	0.3281	0.0654	0.0922	0.0771	0.1852	0.6081
	Improve	15.69%	11.89%	4.34%	4.45%	4.67%	4.32%	10.28%
	ETAF*	0.4301	0.3651	0.0664	0.0972	0.0810	0.1938	0.6583
	Improve	3.19%	0.55%	2.86%	-0.93%	-0.37%	-0.31%	1.87%
	ETAF	0.4438	0.3671	0.0683	0.0963	0.0807	0.1932	0.6706

- Case Study 2: Epinions
 - Sensitivity analysis



Performance comparison

View	Method	Pre@5	Pre@10	Rec@5	Rec@10	MAP	NDCG	MRR
All	EPT	0.1700	0.1164	0.2840	0.3124	0.2753	0.3267	0.4203
Users	Improve	109%	105%	94.37%	87.04%	105%	95.81%	97.69%
	TAF	0.3509	0.2361	0.5478	0.5824	0.5599	0.6361	0.8275
	Improve	1.34%	1.23%	0.77%	0.33%	0.75%	0.57%	0.41%
	ETAF	0.3556	0.2390	0.5520	0.5843	0.5641	0.6397	0.8309
Cold	EPT	0.0471	0.0235	0.1933	0.1933	0.1895	0.2011	0.2216
Start	Improve	246%	246%	245%	245%	243%	234%	243%
	TAF	0.1629	0.0814	0.6660	0.6660	0.6529	0.6799	0.7651
	Improve	0.00%	0.00%	0.00%	0.00%	-0.46%	-0.35%	-0.55%
	ETAF	0.1629	0.0814	0.6660	0.6660	0.6499	0.6775	0.7609
Warm	EPT	0.5775	0.4739	0.1633	0.2264	0.2293	0.3689	0.7946
Start	Improve	24.38%	28.99%	33.31%	36.35%	48.89%	34.05%	12.90%
	TAF	0.7085	0.6042	0.2108	0.3040	0.3307	0.4846	0.8994
	Improve	1.38%	1.18%	3.27%	1.55%	3.24%	2.04%	-0.26%
	ETAF	0.7183	0.6113	0.2177	0.3087	0.3414	0.4945	0.8971

Distribution of user interactions

Conclusion

- Extended TAF
 - Incorporating global trust
 - Four general trust factors
- Formulation of ETAF
 - No explicit trust required
- Empirical evaluation
 - global trust leads to better performance
 - and indirect influence on local trust

Future Work

- More behavior features
 - Interaction duration
 - Interaction frequency

Thank You! Questions?