

From Ratings to Trust: An Empirical Study of Implicit Trust in Recommender Systems

<u>Guibing Guo</u>, Jie Zhang, Daniel Thalmann Anirban Basu^{*}, Neil Yorke-Smith^{**}

School of Computer Engineering, NTU, Singapore *KDDI R&D Laboratories, Inc., Japan **American University of Beirut, Lebanon; and University of Cambridge, UK

Introduction

Trust-based RSs

- User-item ratings
- User–user trust
- Alleviating data sparsity, cold start, etc.

Introduction

Trust types

- Explicit
 - Binary trust only
 - Noisy trust: trusted users, different preferences
 - Sparse trust
- Implicit
 - Inferred from user behaviors
 - Revealing implicit trust ties
 - Real values, richer information

Introduction

Trust Metrics

- Rating prediction of items only
- No comparison with explicit trust

Our proposal

- Recover explicit relationships accurately
- Reveal as much explicit trust as possible

Outline

Trust Definition

Trust in RSs

- one's belief towards the ability of others in providing valuable ratings
- Trust properties
 - Asymmetry
 - Transitivity
 - Dynamicity
 - Context dependency

► TM3 (Hwang and Chen, 2007)

$$p_{u,i} = \bar{r}_u + (r_{v,i} - \bar{r}_v)$$

► TM3a
 $t_{u,v} = \frac{1}{|I_{u,v}|} \sum_{i \in I_{u,v}} (1 - \frac{|p_{u,i} - r_{u,i}|}{r_{max}})$
► TM3b

$$t_{u,v} = \frac{|I_{u,v}|}{|I_u \cup I_v|} \left(1 - \frac{1}{|I_{u,v}|} \sum_{i \in I_{u,v}} \left(1 - \frac{|p_{u,i} - r_{u,i}|}{r_{max}}\right)^2\right)$$

TM4 (O'Donovan and Smyth, 2005) Correct $(r_{v,i}, r_{u,i})$: $|p_{u,i} - r_{u,i}| < \epsilon$

$$t_{u,v} = \frac{|CorrectSet(v)|}{|RecSet(v)|}$$

► TM5 (O'Donovan and Smyth, 2005)

$$u_{v} = \frac{1}{|I_{u,v}|} \sum_{i \in I_{u,v}} \frac{|p_{u,i} - r_{u,i}|}{r_{max}}$$
$$b_{v} = \frac{1}{2} (1 - u_{v})(1 + s_{u,v})$$
$$d_{v} = \frac{1}{2} (1 - u_{v})(1 - s_{u,v})$$

 $t_{u,v} = b_v$

Comparison

Table 1: A comparison of different trust metrics in terms of trust properties

Method	Asymm.	Transitive	Dynamic	Context
TM1 [9]	No	Yes	No	No
TM2 [13, 18]	No	Yes, iff $s_{u,v} > \theta_s$	No	No
TM3a [7],	No	Yes	No	No
TM3b [16]				
TM4 [12]	No	Yes	No	No
TM5 [15]	No	Yes, iff $s_{u,v} > \theta_s$	No	No

More about ratings

- Rating time
- Item category
- Rating noise
 - Assumption: ratings are accurate and reflecting users' real preferences

Evaluation

Experimental Settings

- Two real-world datasets
- 5-fold cross validation
- Using suggested settings
 - TM1: $\theta_s = 0.07$, $\theta_I = 2$
 - TM3b: $\lambda = 0.15$
 - TM4: $\epsilon = 0.8$, or 1.5

Dataset	Users	ltems	Ratings	Trust	Density
FilmTrust	1,508	2,071	35,497	1,853	1.14%
Epinions	40,163	139,738	664,824	487,183	0.05%

Evaluation

Evaluation Metrics

Metrics for rating prediction

• MAE =
$$\frac{\sum_{i} |\hat{r}_{i} - r_{i}|}{N}$$

• RC = $\frac{P}{M}$

- Metrics for trust ranking
 - NDCG
 - Recall

Evaluation

Performance of trust ranking

Performance of rating prediction

Performance of rating prediction

Table 3: Significance tests of the MAE differences relative to the CF method in FilmTrust

Methods	Mean Diff.	df	t	p-value
TM1 - CF	0.0055	9	9.075	7.978e-6
TM2 - CF	0.0258	9	12.926	4.077e-7
TM3a - CF	0.0162	9	14.254	1.756e-7
TM3b - CF	-0.0005	9	-0.357	0.729
TM4 - CF	0.0073	9	7.719	2.943e-5
TM5 - CF	0.0049	9	11.691	9.614e-7

Table 4: Significance tests of the MAE differences relative to the CF method in Epinions

Methods	Mean Diff.	df	t	p-value
TM1 - CF	-0.0324	9	-38.992	$2.386e{-}11$
TM2 - CF	0.0276	9	39.747	2.009e-11
TM3a - CF	-0.0284	9	-20.978	5.957e-9
TM3b - CF	0.0248	9	23.531	2.155e-9
TM4 - CF	-0.0320	9	-40.137	1.841e-11
TM5 - CF	-0.0031	9	-37.747	3.190e-11

Summary

Summary

- Two kinds of metrics show more performance measures
- Trust metrics relatively low
 - Explicit trust should be considered
 - Lack of consistency across datasets
 - Similarity-based metrics not work well
 - Similarity methods problematic themselves

Conclusion

Studied 5 trust metrics Properties of trust

Proposed trust ranking metrics

Conducted experiments Trust metrics need improvement

Future Work

- Model-based approaches
- Utility comparison of explicit & implicit trust in predicting item ratings
- Enabling trust propagation
- More rating inform should be considered.

Thank You! & Questions?