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1. Motivation 2. Bayesian Similarity Measure

Ratings are essentially important for collaborative filtering to Dirichlet distribution represents an unknown event by a prior
identify similar users based on which recommendations are distribution on the basis of initial beliefs. It suits similarity
generated. However, traditional similarity measures (cosine measure since similarity Is updated when new ratings arrive.
similarity, Pearson correlation coefficient) suffer from issues:

* (rur Tvr) IS @ pair of ratings given by users u, v on item k.
 Flat-value problem: COS=1, PCC non-computable » L={l, 1, ...}, |; <lj;q Is asetof rating scales.

» Opposite-value problem: PCC=-1 * d = |ryr — 1yk| 1S the rating distance we focus on.

¢ Single-value problem: COS=1, PCC non-computable e D = {dl: d,, .., dn}: di < di+11 D IS a random distance

» Cross-value problem: PCC=-1 (crossing), 1 (otherwise) variable whose probability distribution is x = (x4, ..., x,,)

COS and PCC only consider the direction of rating vectors. The probability density of the Dirichlet distribution is:
Hence, we design a novel Bayesian approach by taking into F(a(,) i~
account both the direction and length of rating vectors. p(xla) = [T._, T(a;) 1_[

where ¢y = )L, a; and a; > 0 represent the pseudo rating

3. Experiments pairs observed in the prior. They are set by:
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(1) Examples of comparing with COS and PCC (left figure) o j=11"Pj ifi=1
(2) The nature of similarity measures w.r.t. vector length N, o i n2pipisio1, if 1<i<n
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Conclusion: Bayesian similarity can solve the four issues & .
—1 otherwise

of COS and PCC, and compute more reliable and
distinguishable similarity measurements.
(3) Predictive accuracy on six real-world data sets:

where o Is the standard deviation of all ratings, and c is a
constant and set to be [, /o or O If rating Info unknown.

e O e W “r o o oo 1| | Hence the updated posterior probability is given by:
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Conclusion: Bayesian similarity achieves better predictive Sup =1 d,
accuracy than others across data sets. Another consideration is correlation due to chance:
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where 6 = 0.04 1S a constant user bias.
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