
1. Motivation 
Ratings are essentially important for collaborative filtering to 
identify similar users based on which recommendations are 
generated. However, traditional similarity measures (cosine 
similarity, Pearson correlation coefficient) suffer from issues: 
 
• Flat-value problem: COS=1, PCC non-computable 
• Opposite-value problem: PCC=-1 
• Single-value problem: COS=1, PCC non-computable 
• Cross-value problem: PCC=-1 (crossing), 1 (otherwise) 
 
COS and PCC only consider the direction of rating vectors. 
Hence, we design a novel Bayesian approach by taking into 
account both the direction and length of rating vectors.  

Dirichlet distribution represents an unknown event by a prior 
distribution on the basis of initial beliefs. It suits similarity 
measure since similarity is updated when new ratings arrive.  
  
• (𝑟𝑢,𝑘 , 𝑟𝑣,𝑘) is a pair of ratings given by users u, v on item k.  
• 𝐿 = 𝑙1, 𝑙2, … , 𝑙𝑛 , 𝑙𝑗 < 𝑙𝑗+1 is a set of rating scales.  
• 𝑑 = |𝑟𝑢,𝑘 − 𝑟𝑣,𝑘| is the rating distance we focus on. 
• 𝑫 = 𝑑1,𝑑2, … ,𝑑𝑛 ,𝑑𝑖 < 𝑑𝑖+1, 𝐷 is a random distance 

variable whose probability distribution is 𝑥 = (𝑥1, … , 𝑥𝑛) 
 

The probability density of the Dirichlet distribution is: 
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where 𝛼0 = ∑ 𝛼𝑖𝑛
𝑖=1  and 𝛼𝑖 > 0 represent the pseudo rating 

pairs observed in the prior. They are set by: 
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A rating pair can be represented by a vector 𝛾 = (𝛾1, … , 𝛾𝑛), 
where only 𝛾𝑖 = 1 due to 𝑑𝑖 = |𝑟𝑢,𝑘 − 𝑟𝑣,𝑘| and others remain 
0. The evidence weight is defined by:  
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where 𝜎 is the standard deviation of all ratings, and c is a 
constant and set to be 𝑙1/𝜎 or 0 if rating info unknown.  
 
Hence the updated posterior probability is given by:  
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𝑖=0 . The user distance is 
defined as the weighted average of rating distances:  
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where 𝑜𝑖 > 0 is the importance of the rating distance 𝑑𝑖, 
defined as the difference between the prior and posterior 
probability:  

𝑜𝑖 = 𝐸 𝑥𝑖 𝛼𝑖 + 𝛾𝑖0 − 𝐸(𝑥𝑖|𝛼𝑖) 
The ‘raw’ similarity is obtained by normalizing user distance: 
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Another consideration is correlation due to chance: 

𝑜𝑢,𝑣
′′ = �

𝛼𝑖
𝛼0

𝛾𝑖
0𝑛

𝑖=1

 

 
Hence, the user similarity is defined by: 

𝑜𝑢,𝑣 = max (𝑜𝑢,𝑣
′ − 𝑜𝑢,𝑣

′′ − 𝛿, 0) 
where 𝛿 = 0.04 is a constant user bias.  

3. Experiments 

2. Bayesian Similarity Measure 

(1) Examples of comparing with COS and PCC (left figure) 
(2) The nature of similarity measures w.r.t. vector length 

 
 
 
 
 
 
 
Conclusion: Bayesian similarity can solve the four issues 
of COS and PCC, and compute more reliable and 
distinguishable similarity measurements.  

(3) Predictive accuracy on six real-world data sets:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion: Bayesian similarity achieves better predictive 
accuracy than others across data sets.   
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