
Knowledge-Based Systems 74 (2015) 14–27
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Leveraging multiviews of trust and similarity to enhance
clustering-based recommender systems
http://dx.doi.org/10.1016/j.knosys.2014.10.016
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: gguo1@ntu.edu.sg (G. Guo), zhangj@ntu.edu.sg (J. Zhang),

nysmith@aub.edu.lb (N. Yorke-Smith).
Guibing Guo a,⇑, Jie Zhang a, Neil Yorke-Smith b,c

a School of Computer Engineering, Nanyang Technological University, Singapore
b American University of Beirut, Beirut, Lebanon
c University of Cambridge, Cambridge, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 April 2014
Received in revised form 25 September
2014
Accepted 28 October 2014
Available online 4 November 2014

Keywords:
Recommender systems
Multiview clustering
Collaborative filtering
Cold start
Similarity
Trust
Although demonstrated to be efficient and scalable to large-scale data sets, clustering-based recom-
mender systems suffer from relatively low accuracy and coverage. To address these issues, we develop
a multiview clustering method through which users are iteratively clustered from the views of both
rating patterns and social trust relationships. To accommodate users who appear in two different clusters
simultaneously, we employ a support vector regression model to determine a prediction for a given item,
based on user-, item- and prediction-related features. To accommodate (cold) users who cannot be clus-
tered due to insufficient data, we propose a probabilistic method to derive a prediction from the views of
both ratings and trust relationships. Experimental results on three real-world data sets demonstrate that
our approach can effectively improve both the accuracy and coverage of recommendations as well as in
the cold start situation, moving clustering-based recommender systems closer towards practical use.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Collaborative filtering (CF) [1] is a widely-exploited technique
in recommender systems to provide users with items that well
suit their preferences. The basic idea is that a prediction for a
given item can be generated by aggregating the opinions (i.e.,
ratings) of like-minded users, i.e., the users with similar interest.
CF has been extensively studied over decades, and many
approaches [1,15,10] have been proposed in the literature. These
approaches can be classified into two categories: memory-based
and model-based methods. Memory-based methods [1,10] aim to
find similar users (called nearest neighbors) by searching the
entire user space, that is, the similarity between each user and
the active user (who desires recommendations) needs to be
computed using some similarity measure such as the Pearson
correlation coefficient [1]. Although CF gained popularity due to
its simplicity, the time-consuming procedure of searching for
similar users poses a big challenge when facing large-scale data
sets, which is a typical characteristic of Web 2.0. Other issues
of memory-based methods include data sparsity and cold start
problems [10] since the computed similarity may not be reliable
due to insufficient ratings.

In contrast, model-based methods (e.g., [30,31]) can address
these issues by training a prediction model offline using all the
rating data (both relevant and irrelevant to the active user) rather
than only based on the overlapping ratings between users. Among
the various approaches, matrix factorization [15] is arguably the
most popular model-based technique. It factorizes the user-item
rating matrix into small ranks of user-feature and item-feature
matrices. Then, the prediction is generated by the inner product
of a user’s feature vector and an item’s feature vector. Generally,
these methods can well adapt to large-scale data sets and cope
with the data sparsity problem. However, a critical drawback is
that the newly-issued ratings cannot be quickly involved for
predictions: retraining a model is usually time-consuming and
costly. This is a drawback because millions of new ratings may
be reported every few hours in real applications. In addition, a
lesson learned from the Netflix competition shows that the best
method is a combination of hundreds of different recommendation
algorithms, and none of a single algorithm can achieve the best
performance over the others [2]. In this regard, it is still meaning-
ful to develop other kinds of model-based methods. In this work,
we focus on the development of a clustering-based approach
based on both user ratings and trust information. In this article,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.10.016&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.10.016
mailto:gguo1@ntu.edu.sg
mailto:zhangj@ntu.edu.sg
mailto:nysmith@aub.edu.lb
http://dx.doi.org/10.1016/j.knosys.2014.10.016
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

u2

u1u4

u3

u5

u6

(a) Similarity Clustering

u2

u1u4

u3

u5

u6

(b) Trust Clustering

u2

u1u4

u3

u5

u6

(c) Multiview Clustering

Fig. 1. The user clustering approaches based on similarity and trust information. Circles denote the formed user groups (clusters), and dashed lines indicate the similarity
between two users, while solid lines with arrows represents user trust (social trust is directional): (a) clustering users by similarity; (b) clustering users by trust and (c)
clustering users by both similarity and trust (i.e., multiviews) where more users can be grouped in one cluster.

1 The cold-start or cold users refer to those who rated only zero or a small number
of items, e.g., less than 5 items.

G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27 15
we adopt the definition of trust as ‘‘one’s belief towards the ability
of others in providing valuable ratings’’ given by Guo [9]. By
definition, trust has a much stronger correlation with user
preferences than other general social connections (e.g., friendship).

Clustering-based approaches [22] offer an alternative to model-
based methods. Instead of decomposing the rating matrix into
matrices with small ranks, these approaches reduce the search
space by clustering similar users or items together. For example,
as illustrated in Fig. 1, users can be clustered by either similarity
(a) or trust (b) such that the search space for nearest neighbors
can be effectively narrowed down (to smaller clusters). In this
way, new ratings of clustered users or items can be timely made
use of to make predictions. However, clustering-based methods
have not been widely exploited in recommender systems.
Although demonstrated to be efficient and scalable to large-scale
data sets, they are recognized to suffer from relatively low accu-
racy and coverage [22,28,3]. This is mainly because similar users
can only be selected from the fixed size of cluster members, and
in general a fewer number of similar users can be identified (than
searching the whole space). In addition, the recommendation
performance is also sensitive to the quality of the clustering meth-
ods. As a consequence, relatively low accuracy and coverage are
observed, and these issues severely hinder the practical use of
clustering-based approaches in recommender systems. To sum
up, as dimension reduction models, clustering-based approaches
retain the advantages of low computational cost (for searching
candidate users) over memory-based approaches, and are capable
of integrating newly-issued ratings for up-to-date recommenda-
tions relative to matrix factorization-based models. However, clus-
tering-based approaches are less exploited in the literature, and
suffer from relatively low accuracy and coverage.

To cope with the aforementioned issues, we develop a
multiview clustering method by making use of both the view of
rating patterns and the view of social trust relationships.
Specifically, users are iteratively clustered from the two views
using a classic partitional clustering algorithm, and clusters
generated from different views are then combined together (e.g.,
as illustrated in Fig. 1(c)). The underlying assumption is that simi-
larity and trust provide different views of user correlations.

Multiview-based clustering methods have not been well
exploited in recommender systems and most previous works only
function in a single view, namely, the user similarity. The proposed
multiview clustering method has several advantages relative to
single view clustering methods. First, since the clusters of users
from different views will be integrated together, there are more
candidate users from which similar users can be identified. Hence
intuitively, both the recommendation accuracy and coverage will
be improved, as we will demonstrate. Second, to accommodate
users who appear in two different clusters simultaneously, we
employ a support vector regression (SVR) model [7] to determine
a proper prediction for a given item based on user-, item- and
prediction-related features, described in Section 4.2. By doing so,
the recommendation performance can be further improved. Third,
to accommodate (cold) users1 who cannot be clustered due to
insufficient data, we propose a probabilistic method in Section 5 to
derive a prediction from the viewpoints of both ratings and trust
relationships. A series of experiments are conducted in Section 6
based on three real-world data sets, namely Flixster, FilmTrust and
Epinions. The results confirm that our approach can effectively
improve both the accuracy and coverage in comparison with the
other counterparts, and function significantly better in handling cold
users than trivial strategies (such as the average of all cluster predic-
tions) used in previous approaches.

In summary, the main contributions of this article are:

1. We propose a multiview clustering method to cluster users
from both the views of user similarity and trust. To our best
knowledge, we are the first to propose a multiview cluster-
ing method based on both kinds of information.

2. We propose a support vector regression (SVR) model to
handle the situation where two predictions are generated
from two clusters. A number of user-, item-, prediction-
related features are identified for this purpose.

3. We propose a probabilistic method to resolve the cold start
problem that has not been addressed previously. Both
ratings and trust information are adopted in the method.

4. We conduct a series of experiments on three real-world
data sets to verify the effectiveness of the proposed
multiview clustering method in comparison with other
methods.

Our work takes the first step to cluster users from multiple
different views of user preference rather than a single view, and
verifies the ability to mitigate the issues of low accuracy and
coverage using real-world data sets, moving clustering-based
recommender systems closer towards practical use.

The rest of this article is organized as follows. Section 2 gives an
overview of the related research on trust-based and clustering-
based recommender systems. Then, our approach is elaborated in
the threefold: formulating the multiview clustering algorithm in
Section 3, generating predictions by support vector regression
in Section 4, and handling the cold start problem in Section 5. After
that, experiments based on three real-world data sets are
conducted in Section 6. Finally, Section 7 concludes our present
work and outlines the future research.

16 G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27
2. Related work

Trust has been extensively studied in recommender systems,
working as an additional dimension to help model user prefer-
ence. The principle is that people trusting each other are likely
to share similar preferences [24]. Trust is often investigated in
memory-based methods. For example, Massa and Avesani [18]
build a trust-aware recommender system by replacing user simi-
larity with trust that can be propagated in the trust networks.
They find that trust is able to mitigate the issues of traditional
CF such as data sparsity and cold start. However, the more com-
mon usage of trust is to combine it with similarity in CF. For
example, Guo et al. [10] merge the ratings of trusted neighbors
in order to form a new and more complete rating profile for the
active users based on which recommendations can be generated
by integrating similarity and trust into CF. In addition, trust is
also used in model-based methods. Ma et al. [17] propose a social
trust ensemble (STE) method, which linearly combines a basic
matrix factorization approach and a social trust based approach.
This approach is further enhanced by Jamali and Ester [13] where
trust propagation is enabled in the social networks. Recently,
Yang et al. [29] propose a TrustMF method to consider both the
influence of trustors and trustees2 in a matrix factorization
method. They show that better performance can be obtained using
the new model. In conclusion, trust-aware recommendations can
improve the performance of rating-based recommender systems,
indicating that trust is able to provide an effective view of user
preference in addition to similarity.

On the other hand, clustering-based approaches gain less
attention in recommender systems although being demonstrated
to be efficient and scalable to large-scale data sets [22,28]. As a
dimension-reduction method, they are capable of alleviating the
sparsity of rating data [21]. Most previous works focus on
clustering users or items from the view of similarity. For example,
Sarwar et al. [22] apply the bisecting k-means algorithm to clus-
ter users and base the neighborhood formation on the cluster
members. However, they find that the accuracy is decreased
around 5% in comparison with the conventional kNN CF method.
Xue et al. [28] show that close accuracy can be obtained at the
expense of rating coverage. Recent works such as Bellogìn and
Parapar [3] report that by applying more advanced clustering
method, the accuracy can be further improved and even outper-
form the other CF approaches. However, coverage remains an
unresolved issue. In summary, previous clustering-based
approaches suffer from relatively low accuracy and, especially,
coverage. This motivates us to develop a better clustering method
that is capable of alleviating these issues.

Few works have attempted to incorporate social relationships
into clustering-based methods with the aim of better performance
of CF. DuBois et al. [8] combine a correlation clustering algorithm
and trust models together to derive trust from the connection
distance in a trust network. However, only limited improvement
(around 0.0001 in mean absolute error) is observed, and their
approach requires the numerical trust values which are not avail-
able in all the existing (to our best knowledge) publicly available
recommendation datasets. Another drawback of the existing
approaches is that most of them do not take care of the cold start
problem. In their experiments, they either simply remove cold
users from data sets or adopt the average value as the prediction.
In this work, we presume that similarity and trust are conditionally
independent characteristics (attributes) of user preference, and
hence users can be clustered from both views of similarity and
2 Trustor refers to the users who trust others, and trustees are those who are
trusted by other users.
trust rather than merging them into a single view. In addition,
we develop a probabilistic method to resolve the cold start
problem based on both ratings and trust information. Thus, we
open a new way to cluster users, i.e., from multiple different views
of user preferences.

Multiview methods have been studied only in a very limited
manner in recommender systems. Oufaida and Nouali [20]
propose a recommendation method that hybrids the recommen-
dations derived from multiple views, including collaborative,
social and semantic views. Rather than to generate recommenda-
tion separately, our approach aims to produce individual
recommendations by properly integrating different kinds of infor-
mation. The most related work is published by Li and Murata
[16], where a multidimensional clustering method is proposed
to cluster users separately according to different subsets of item
attributes. They aim to improve the diversity of item recommen-
dations by avoiding providing many similar items. In contrast, our
work focuses on a more principled multiview clustering algo-
rithm based on two user features, i.e., similarity and trust, and
targets better predictive accuracy and coverage. To the authors’
best knowledge, our approach is the first to form a multiview
clustering method merely dependent on users’ ratings and trust
information.
3. Multiview clustering

We first introduce the background of the multiview clustering
algorithm, and then elaborate how to apply it in recommender
systems together with the k-medoids approach [5].

The multiview clustering algorithm was first introduced by
Bickel and Scheer [4]. The basic idea is to seek clusterings in differ-
ent subspaces of a data space, i.e., the user space in our case. Users
have two different kinds of information, namely ratings issued on
items of interest and trust specified on other users (e.g., friends).
Hence, these types of information describe users from different
views, i.e., rating patterns (user behaviors) and trust links (social
connections). In this section, we aim to cluster users using both
ratings and trust information.

3.1. Multiview clustering algorithm

The most well-known partitional clustering methods are the k-
means and k-medoids algorithms due to their simplicity and
effectiveness. The former algorithm is adopted by many works
or used as a baseline approach [28,3], whereas the latter has
not been used in recommender systems, to the authors’ best
knowledge. Since the k-means algorithm generates a cluster
center (centroid) by averaging all the values of each attribute, it
will eliminate important personal information such as trusted
neighbors. Instead, the k-medoids algorithm chooses a real user
as the centroid which minimizes the summation of pairwise
distances within a cluster. Mathematically, the objective function
is given as follows:

J ¼ min
X
c2C

X
u;v2c

dðu;vÞ; ð1Þ

where C is a set of user clusters, users u; v are members of cluster
c 2 C, and dðu;vÞ defines the distance of users u and v. We adopt
the k-medoids algorithm in order to preserve individuals’ ratings
and trust information during the clustering process described as
follows.

First, users are clustered using the rating information. In partic-
ular, user similarity is used as the distance metric to measure the
closeness of two users. For clarity, we keep symbols u;v for users

G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27 17
and i; j for items, and thus denote ru;i as a rating reported by user u
on item i. We denote Iu as the set of items rated by user u. The Pear-
son correlation coefficient [1] is often adopted to compute user
similarity:

su;v ¼
P

i2Iu;v
ðru;i � �ruÞðrv;i � �rvÞffiP

i2Iu;v
ðru;i � �ruÞ2

q ffiP
i2Iu;v
ðrv;i � �rvÞ2

q ; ð2Þ

where su;v 2 ½�1;1� is the similarity between users u and
v ; Iu;v ¼ Iu \ Iv is the set of items commonly rated by both users,
and �ru and �rv represent the average of ratings given by users u
and v, respectively. The user distance is thus computed by
dsðu;vÞ ¼ 1� su;v . Based on this, the k-medoids algorithm can be
applied to cluster users.

Second, separately, users are clustered using the trust informa-
tion. Although a user may specify other users as trusted neighbors
and indicate the extent to which they are trustworthy, generally in
real applications we only get binary values of trust (i.e., trust links)
due to the concerns of, for instance, privacy. This deteriorates the
effectiveness of trust inference methods such as MoleTrust [18].
Hence, we define trust values as:

tu;v ¼
1

du;v
; ð3Þ

where tu;v 2 ð0;1� is the trustworthiness of user v relative to user u,
and du;v is the minimum distance between two users determined by
a breath-first search in the trust network, where users are con-
nected with each other by social trust relationships. The closer
two users are located, the higher trustworthiness the users have.
According to the theory of six-degree separation [27], any two users
in the social network can be connected within a small number of
steps: we thus restrict du;v 6 6 to prevent meaningless searching.
The trust distance is thus computed by dtðu;vÞ ¼ 1� tu;v . Based
on this, the k-medoids algorithm can be applied to cluster users.

Algorithm 1. Multiview k-medoids Algorithm
Algorithm 2. Cluster Integration Algorithm
The pseudocode of our multiview clustering algorithm is pre-
sented in Algorithms 1 and 2. In Algorithm 1 the rating distance
matrix Ds and the trust distance matrix Dt are taken as inputs to
the multiview clustering algorithm which outputs the clusters of
users. We begin with the view of trust3 by randomly selecting k
users as the initial medoids, and hence form a set h0

t of trust medoids
at step p ¼ 0 (lines 1–2). Then each user v in the user space will be
assigned to the trust medoid with whom user v has the minimum
distance among all the medoids mt . The initial user clusters in the
view of trust are formed and denoted as C0

t (line 3). After that, the
multiview clustering method will iteratively (lines 5–12 and lines
13–20) cluster users from the two different views and combine both
views as the final results (line 21). In particular, during lines 5–12,
we initialize the similarity medoids by the trust medoids determined
in the previous step (line 6). Then they are updated by swapping
each medoid with other users u within the cluster Cp�1

t (line 7),
and by the users who achieve the minimum summation of the pair-
wise rating distances (lines 8–11). Lastly, user clusters Cp

s in the view
of similarity are generated (line 12). Similarly in the view of trust
(lines 13–20), the previously generated similarity medoids will be
assigned as the initial trust medoids at step p. The trust medoids
are updated in the light of trust distances, and produce a new set
of user clusters Cp

t . This iterative process will continue until no
medoids are changed during lines 9–11 and 17–19, or the maximum
iteration number is reached (line 4). Finally, the user clusters from
different views are combined together by Algorithm 2 (line 21) as
the output of the multiview algorithm.

Algorithm 2 elaborates how to integrate trust and similarity
clusters using merging and pruning operations. The motivation is
that a cluster with few users may fail to produce reliable predictions
3 We empirically find that there is little difference with the ordering of views in the
multiview clustering.

u4

u1u2

u3

u5

u6

C1 C2

Fig. 2. An example of the multiview clustering approach. Similarity is denoted by
dashed line, while mutual trust is represented by solid lines. For example, users u1

and u2 share similar preferences, and users u1;u5 and u6 mutually trust each other.
Two clusters are generated by the multiview clustering approach, namely clusters
C1 and C2 based on both similarity and trust.

18 G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27
for a given item. We observe that it is not necessary to have the exact
number (k) of clusters as indicated, since the main objective is to
reduce dimensionality and generate accurate recommendations.
In Algorithm 2, the trust and similarity clusters are taken as input,
and user clusters are obtained as output. The integration will be
triggered by a criterion, i.e., the number of cluster members being
less than a cluster threshold hc (line 1). In our case, we use the value
of 5 as default value which gives good results in general.4 For each
cluster Ci

t in the clusters Ct (line 2), if the criterion is satisfied (line
3), the integration will proceed. First, we find another cluster Cj

t that
achieves the minimum average distance between each member u in
Ci

t and the medoid centroid mj
t of cluster Cj

t (lines 4–15). If such a clus-
ter is found (line 16), all the members of cluster Ci

t will be merged into
cluster Cj

t (line 17). Cluster Ci
t will be pruned regardless of whether it

will be merged or not (line 18). After processing trust clusters Ct , we
repeat the procedure by replacing Ct with similarity clusters Cs (line
19). Finally, the clusters are combined in a pairwise manner and
returned as output (lines 20–23). The pairwise combination is due
to the iterative procedure where the cluster medoid is derived from
the previous clusters from the other view. One advantage of cluster
integration is that relatively stable and less clusters (6 k) can be pre-
served even if the value of k is not indicated appropriately (e.g., too
large). Thus, it can alleviate the problems of specifying an ideal value
of k as input to Algorithm 1.
3.2. Complexity analysis

For each iteration of Algorithm 1, the most time-consuming parts
are to iteratively search and update new similarity and trust med-
oids within previously generated clusters (lines 7–8 and 15–16).
Specifically, the computation time is around Oðn2

s þ n2
t Þ � Oðn2Þ,

where ns;nt refer to the average number of members within a
similarity-based and a trust-based cluster, respectively; and
n ¼maxfns;ntg. For Algorithm 2, the main computation is to
identify the cluster to be merged and pruned (lines 6–15). The time
complexity is OðninjÞ, where ni;nj refer to the average number of
users in clusters Ci

t and Cj
t , respectively. As the algorithm will elim-

inate clusters in line 18, the whole computation time is
OðkrninjÞ � Oðn2Þ, where n ¼ maxfni;njg, and kr 6 k is the number
of left clusters after reduction. To sum up, the overall time complex-
ity of the multiview clustering approach is Oðmðn2 þ n2ÞÞ � Oðn2Þ,
where m is the maximum number of iterations. In practice, the value
of m is small (around 20), and n will be far smaller than the number
of total users, especially when a number (k) of clusters are
generated. To boost the computation, we can adopt a parallelization
technique (e.g., multi-threaded) to implement the critical time-
consuming parts (e.g., lines 7–8), since there are no relations among
different clusters. In this way, the time complexity can be reduced to
OðnÞ, i.e., linear to the average number of cluster users.
3.3. An example

Suppose there are six users fu1;u2;u3;u4;u5;u6g, where the first
two users are similar with each other and the same holds for the
last three users. Users fu2;u4g are close friends and users
fu1;u5;u6g are another friend group. These relations are illustrated
in Fig. 2. To start with, we randomly select three users, e.g., u1;u3

and u4 as the initial trust medoids in the case of k ¼ 3 clusters.
Hence, user u2 and users u5;u6 will be clustered and linked to users
u4 and u1, respectively. The generated three clusters are
c1

t ¼ fu2;u4g; c2
t ¼ fu3g and c3

t ¼ fu1;u5;u6g at step p ¼ 0, from
which similarity medoids are initialized by trust medoids and then
updated by swapping the medoid with any other user in the cluster
4 Further tuning the value of h may give better performance.
and computing the summation of pairwise rating distances within
the clusters. Suppose users u2;u3 and u5 are found as new similar-
ity medoids: the user clusters based on similarity obtained are
c1

s ¼ fu1;u2g; c2
s ¼ fu3g and c3

s ¼ fu4;u5; u6g. In the next iteration,
trust medoids will be assigned by using similarity medoids initially
and then updated according to trust distances. In this iteration, we
note that users u2;u3 and u5 are the same medoids as the last iter-
ation and hence no update is processed. Until now we have gener-
ated stable trust and similarity clusters separately. Next, we will
integrate them together. Initially, we set the threshold hc ¼ 2 since
only a few users are available. Then the second cluster of similarity
or trust will be processed with merging and pruning. Specifically,
since user u3 has no friends nor is similar to others, the clusters
c2

t and c2
s will be emptied and pruned. Finally, the other clusters

will be pair-wised combined together, resulting in the final
clusters: c1 ¼ fu1;u2;u4g; c2 ¼ ; and c3 ¼ fu1;u4;u5;u6g. Note that
users u1 and u4 appear in two clusters c1 and c3. We will address
this issue next in Section 4.

4. Prediction by support vector regression

We elaborate how to generate item predictions according to the
user clusters obtained by the multiview clustering algorithm, and
how to determine a proper prediction when some users appear
in two different clusters due to the cluster integration.

4.1. Generating predictions

Once users are clustered by the multiview clustering algorithm,
for each active user u, we may find a cluster Cu to which u belongs,
and hence make an item prediction by aggregating the ratings of
cluster members v 2 Cu who are similar to user u:

pu;j ¼
P

v2Cu
wu;v � rv;jP
vwu;v

; ð4Þ

where pu;j is the prediction for user u of an item j, and wu;v is the
importance weight of user v’s ratings relative to user u. Hence, more
important users will have more influence on the prediction. Section
5 will handle the case where the active users cannot be clustered.

The user weight wu;v consists of two parts, namely similarity su;v

and trust tu;v . O’Donovan and Smyth [19] suggest to use the har-
monic mean to integrate both similarity and trust. This is because
high values can only be obtained when both similarity and trust
values are high. We adopt the same strategy to compute the user
weight:

G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27 19
wu;v ¼
2�ð1þsu;v Þ�ð1þtu;v Þ

su;vþtu;vþ2 if tu;v exists;

1þ su;v otherwise:

(
ð5Þ

Since harmonic mean requires positive values and su;v 2 ½�1;1�, we
use 1þ su;v instead of su;v in Eq. (5), and hence 1þ tu;v accordingly.
In case that two users do not have a trust value tu;v , we merely
adopt 1þ su;v as user weight wu;v for consistency.

4.2. Prediction regression

In our multiview k-medoids algorithm, the clusters generated
based on ratings and the clusters based on trust will be combined
together. One resultant phenomenon is that some users may
appear in two different clusters at the same time. For example, in
Fig. 2 user u4 is grouped to cluster C1 due to her trust to user u2

while she is also grouped to cluster C2 due to her similarity to users
u5 and u6. In other words, these cases happen most likely to the
users who have trust connections to the other users, and who also
share similar preferences with other users. According to Eq. (4),
two possible predictions may be generated from different clusters.
Under the assumption that users’ real preferences can be well
approximated using the two predictions from different clusters,
we model the prediction determination as a regression problem:
how to effectively combine the two predictions such that the esti-
mated value will approximate the ground truth, i.e., user’s real
preference as close as possible. Note that a simpler regression
(e.g., a harmonic mean) is ineffective in this case, because the
two predictions may not be equally useful to determine a proper
regression value. Section 6.4 will demonstrate that our approach
works better than a simple average method. Formally, given that
the two predictions are denoted as p1

u;j and p2
u;j, we train a

regression function f to map the two predictions to a value that will
minimize the following loss function Jðf Þ:

f ¼min
f

Jðf Þ ¼min
f

X
u;j

f ðu; j;p1
u;j;p

2
u;jÞ � ru;j

� �2
; ð6Þ

where the regression function f is associated with the active user u,
target item j and two predictions p1

u;j and p2
u;j. This is because even in

two different cases where the two predictions are the same, e.g., 3.5
and 5.0 (suppose that ratings are ranged from 1 to 5), the ground
truth for different users towards different items may differ. For
example, user u may have real preference toward item j as 4.0
whereas user v prefers 5.0 in practice.

To resolve this regression problem, we apply a well-known
method: support vector regression (SVR)5 [7] stemmed from the
support vector machine (SVM). SVM is a classification method for
both linearly and nonlinearly separable data. It is widely applied in
many applications due to its high accuracy. It always finds a global
solution rather than being stuck with a local maximum. Most impor-
tantly, SVR with a proper kernel helps avoid the difficulty of using
linear functions in high dimensional feature space. In particular,
we use the Gaussian radial basis function (rbf):

rbf :expð�cjxi � xjj2Þ; c > 0 ð7Þ

as the kernel,6 where xi and xj are two training examples, and
parameter c defines how much influence a single training example
has. Larger c indicates the closer the other training examples to be
affected. Another parameter of SVM methods is C which reflects
the tradeoff between misclassification of training examples and
5 The SVR used in the article is implemented by a Python module sklearn (http://
scikit-learn.org/stable/).

6 Generally, the rbf kernel is able to achieve good performance [23]. Although its
time consumption is much higher than the linear kernel, this issue is not critical in
our case since a relatively small number of features are used.
simplicity of the decision hyperplane. A low C makes the decision
surface smooth whereas a high C tends to treat all training examples
noiseless. We defer the settings of these parameters till Section 6.
The features that we investigate include user-, item- and predic-
tion-related features.
4.2.1. User-related features
Six kinds of features are identified to describe users: three are

related to user behaviors (i.e., ratings) and three related to user
positions within a cluster. Specifically, the former three attributes
include the number, the average and standard deviation of the
ratings reported by the user. These features capture the rating
activity and bias of user behaviors. The latter three attributes are
the rating distances to the similarity and trust medoids from the
user respectively, and the rating distance between the similarity
and trust medoids. These features describe the user’s relative
position within a specific cluster.
4.2.2. Item-related features
Ten kinds of features are identified to describe items. The first

feature is the number of ratings received by the item, describing
the item’s popularity. The rest of the features depict the distribu-
tions of received ratings, including the (average, mode, maximum,
minimum and standard deviation) of ratings, the ratio of ratings in
each rating scale over all ratings, the absolute difference between
mode and prediction, the number of positive and negative ratings
(see definitions below). These features reflect the general opinions
of users in the community.
4.2.3. Prediction-related features
Ten kinds of features are identified to represent the item predic-

tions, where nine features regard the generation of the predictions,
and the last feature is associated with the quality of predictions.
Specifically, the nine features are the number and standard
deviation of collected ratings, the average, maximum, minimum
and standard deviation of user weights, the weighted average of
user ratings (i.e., the prediction value), and the number of users
identified from similarity cluster and trust cluster respectively.
The first seven attributes are directly related with the generation
of predictions whereas the last two attributes may help distinguish
the composition of the similar users.

One more feature regarding the quality of predictions is the
rating certainty [26], considering both the number of ratings
involved and the conflicts between positive and negative opinions.
The intuition is that the more ratings are aggregated and the higher
consistency among these ratings, the more certain that the predic-
tion is correct. Formally, Wang and Singh [26] define the certainty
as follows:

cu;j ¼
1
2

Z 1

0

xmu; j ð1� xÞnu; jR 1
0 xmu; j ð1� xÞnu; j dx

� 1

�����
�����dx; ð8Þ

where cu;j 2 ð0;1� is the certainty of prediction pu;j, modeled as a
function of mu;j and nu;j referring to the number of positive and
negative opinions (ratings) provided by the similar users regarding
target item j, respectively; x is the probability of a rating being
positive. We denote a rating as positive if its value is greater than
the median rating scale; otherwise it is negative.

In all, we have identified 26 kinds of features regarding each
user-item prediction, summarized in Table 1. By linking pairwise
features together [25], we double the number of features. Since
the two predictions are orderless, during the training stage we also
exchange the orders of the two predictions and hence gain a new
training example.

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/

Table 1
The features that we use to represent the user-item predictions for the SVR training.

User-related features Item-related features Prediction-related features

1. Number of ratings reported by active user u 1. Number of ratings received on target item j 1. Number of ratings given by the similar users
2. Average of ratings 2. Average of ratings 2. Average of user weights
3. Standard deviation of ratings 3. Mode of ratings 3. Maximum of weights
4. Rating distance dsðms;uÞ 4. Maximum of ratings 4. Minimum of weights
5. Rating distance dsðmt ;uÞ 5. Minimum of ratings 5. Standard deviation of weights
6. Rating distance dsðms;mtÞ 6. Number of positive ratings 6. Standard deviation of ratings

7. Number of negative ratings 7. Prediction value
8. Standard deviation of ratings 8. Number of similar users from Cs

9. Absolute difference between mode and prediction 9. Number of similar users from Ct

10. Ratios of ratings in each rating scale over all ratings 10. Certainty of prediction cu;j

20 G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27
5. Handling cold users

A known drawback of traditional clustering-based recom-
mender systems is the inability to deal with cold users. This is
because user-cluster correlations cannot be reliably computed
based on few item ratings shared by cold users [12]. In fact, many
existing works ignore such a case when evaluating their clustering-
based recommender systems, or simply adopt the average predic-
tions from all the clusters. In this article, we propose a probabilistic
approach to identify the likelihood that a user is affiliated with a
certain cluster based on both ratings and trust information.

5.1. Rating-based cluster likelihood

A rating-based likelihood is derived from the ratings reported
by the cold users. Our method is based on the assumption: the
ratings (of a specific item) given by users within the same cluster
follow a Gaussian distribution, since users in the same cluster tend
to have similar preferences, i.e., close ratings on the items
commonly rated. Hence, we classify a user as an anomaly to a
cluster if the average of his/her ratings does not follow the rating
distribution. Specifically, the rating-based likelihood is calculated
in the following three steps.

1. A Gaussian distribution Nðli; diÞ for each item i 2 Iu rated by the
cold user u is fitted, according to the ratings given by the cluster
users. Hence, the likelihood of user u’s rating ru;i following such
a distribution is:
Prðru;i;li; diÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2pd2
i

q exp �ðx� liÞ
2

2d2
i

 !
; ð9Þ

where li; di are the mean and standard deviation of the ratings
on item i, respectively.

2. The likelihood of belonging to cluster c is computed by the aver-
age of likelihoods over the item set Iu:
Prðu; cÞ ¼ 1
jIuj
X
i2Iu

Prðru;i;li; diÞ: ð10Þ

Unlike the general density-based anomaly detection where
probability product is used [6], we adopt the average of proba-
bilities due to the fact that the number of ratings for each cold
user may be different. Hence, a product value will be more
biased to the users with smaller number of ratings.

3. An anomaly is detected if the likelihood is lower than a small
value �. Otherwise, the square value of Prðu; cÞ is taken to fur-
ther increase the discrepancy of likelihoods in different clusters.
Thus, the rating-based cluster likelihood is given by:
lðu; cÞ ¼
0; if Prðu; cÞ < �;
Prðu; cÞ2; otherwise:

(
ð11Þ
In this work, we set � ¼ 0:05 by default. The effect of � will be
left as future work. Nevertheless, it can be analyzed that smaller
value of � means a more relaxed constraint on the probability,
and could involve more clusters in the prediction at the expense
of a higher risk, whereas a higher value leads to smaller number
of clusters for prediction but with more certainty.

5.2. Trust-based cluster likelihood

A trust-based likelihood is computed using the user trust
relationships reported by the cold users. The intuition is that if
the users trusted by a cold user are also trusted by a cluster, the
cold user is likely to join the cluster. Specifically, the trust-based
cluster likelihood is obtained as follows.

1. Represent the trusted neighbors of a cold user u as a value
vector: Tu ¼ ðtu;v1 ; tu;v2 ; . . . ; tu;vm Þ, where m is the number of
users co-trusted by user u and cluster c. Note here we use lower
case c to denote a cluster.

2. Compute the global trust of the trusted neighbors of the cold
user, and represent it as a vector: Tc ¼ ðt�;v1 ; t�;v2 ; . . . ; t�;vm Þ, where
t�;v i

represents the global trust for user v i in cluster c, derived
by:
t�;v i
¼ 1
jUc;ij

X
v j2Uc;i

tv j ;v i
; ð12Þ

where Uc;i represents the set of users in cluster c who have a
trust value with user v i.

3. The trust-based likelihood is derived from the similarity
between Tu and Tc . In cold conditions, cosine similarity is more
preferred than the Pearson correlation coefficient since the for-
mer is computable when the length of vectors is less than 2.
Thus the likelihood is:
lðu; tÞ ¼ cosðTu; TcÞ2 ¼
Pn

j¼1tu;v j
� t�;v jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1t2
u;v j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1t2

�;v j

q
0
B@

1
CA

2

: ð13Þ

As with Eq. (11), trust-based likelihood also adopts the square
value to increase the discrepancy of cluster likelihood. A notable
issue is that a cold user in social networks may also connect to
very few trusted neighbors other than have rated only small
items. In this case, both trust vectors Tu and Tc are quite short
in length. Nevertheless, we are still able to compute the
trust-based likelihood by Eq. (13). Therefore, the proposed
approach is also applicable to such an extreme case.
5.3. Generating predictions

The possibility that a cold user belongs to a specific cluster is
derived by aggregating the two kinds of cluster likelihoods:

Table 2
Summary statistics of the three real-world data sets.

Data set Users Items Ratings Trust Density (%)

Flixster 5000 13,527 264,540 2898 0.39
FilmTrust 1508 2071 35,497 2853 1.14
Epinions 2438 25,786 49,230 2240 0.08

G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27 21
wu;c ¼ lðu; cÞ þ a � lðu; tÞ; ð14Þ

where a 2 ½0;1� is a parameter indicating the importance of the
trust-based likelihood. In other words, we suggest that the similar-
ity-based likelihood may be more reliable than the trust-based one,
because the former likelihood is directly related with ratings
whereas the latter functions more likely as an indicator. It makes
sense in that trusted users may not share similar preference. Finally,
a rating prediction is generated by averaging the predictions from
different clusters according to the weights wu;c , given by:

pu;j ¼
P

cwu;c � pu;j;cP
cwu;c

; ð15Þ

where pu;j;c is the prediction generated from cluster c for user u on
item j, derived by the average of all the ratings given by users in
cluster c. In case that all the weights wu;c are equal to 0 and Eq.
(15) is not computable, we may regard all the weights equally
and adopt the average of cluster predictions (if any) as the final
prediction.

6. Evaluation

We conduct empirical experiments in order to study two main
research questions: (1) whether incorporating multiple views of
user correlations can improve the performance of recommenda-
tions in terms of accuracy and coverage and (2) whether our
method can effectively cope with the cold users.

6.1. Data sets

Three real-world data sets are used in the experiments, namely
Flixster, FilmTrust and Epinions. Flixster.com is a movie sharing
and discovering website where users can report their movie ratings
in the range from 0.5 to 5.0 with step 0.5. We randomly sample
5000 users from the original data set7 as well as the user ratings
and trust ratings. Note that, different from the other two data sets,
the trust information in Flixster is symmetric. Similarly, FilmTrust8

allows users to share movie ratings and explicitly specify other users
as trusted neighbors. We adopt the data set provided by Guo et al.
[12] where ratings are ranged from 0.5 to 4.0 with step 0.5. It
contains 2853 trust ratings issued by 609 users. Epinions.com is a
website in which users can express their opinions about products
(such as books and software) by assigning numerical ratings (from
1 to 5 with step 1) and can indicate other users as trustworthy.
The original data set is generated by Massa and Avesani [18] from
which we randomly sample a subset by selecting the users who have
rated at least three items. The statistics of data sets is shown in
Table 2, where Epinions has the highest data sparsity (having a large
number of items but receiving a small number of user ratings) and a
relatively small amount of trust information.

6.2. Experimental settings

As discussed in Section 2, the only previous trust-based cluster-
ing approach [8] takes as input the numerical trust values that are
7 http://www.cs.sfu.ca/sja25/personal/datasets/.
8 http://www.librec.net/datasets.html.
not available in our data sets. No other state-of-the-art trust-based
clustering approaches have been proposed to date. Multi-
dimensional clustering approaches [20,16] take either semantic
information or item contents as extra dimensions to cluster users,
i.e., they do not use trust information. However, in our cases only
user-item ratings and user-user trust information are available.
In addition, most previous studies use the k-means as the basic
clustering algorithm whereas we adopt the k-medoids to preserve
individuals’ ratings and trust information. Therefore, there is a lack
of proper clustering-based approaches to have a fair comparison
with. Further considering that the main purpose of our experi-
ments is to demonstrate the effectiveness of our multiview cluster-
ing approach with respect to other single view-based approaches,
we implement and compare with the following clustering-based
methods:

� KCF is a baseline method where users are clustered according to
the rating information by a k-medoids method, and item predic-
tions are generated using similarity as user weights.
� KCFT is a variant of KCF method that computes user weights by

the harmonic mean of similarity and trust (see Eq. (5)) for rating
prediction. Note that except for KCF, all the other methods use
this way to compute user weights. Both KCF and KCFT are single
view clustering methods using rating patterns.
� KTrust is a single view clustering method using social trust

information, i.e., users are clustered according to the trust dis-
tances by a k-medoids method.
� MV is our multiview k-medoids method that clusters users

using both ratings and trust information. As mentioned in Sec-
tion 4.2, two parameters need to be set, namely c and C for the
SVR model. In the experiments, the parameters are determined
by varying their values in the range [0,1].9 Specifically, we apply
exhaustive grid search in the sets f0:0;0:1;0:2;0:3;0:5;0:7;1:0g
for c, and C ¼ 1:0 (suggested by the sklearn module), and the best
values are chosen using 5-fold cross validation on the training
sample, guided by the mean square errors (MSE).

We apply 5-fold cross validation to evaluate the performance of
each method. That is, all data sets are randomly split into five folds.
At each time, the data of four folds are used as the training set and
the last one as the test set. We repeat this procedure five times
until all folds are tested and average the results. The performance
is measured in terms of accuracy and coverage. Mean absolute error
(MAE) and root mean square error (RMSE) are popular predictive
metrics to measure the closeness of predictions relative to the
ground truth:

MAE ¼
P

u;i2Xjru;i � pu;ij
jXj ;

RMSE ¼

ffiP
u;i2Xðru;i � pu;iÞ

2

jXj

s
;

ð16Þ

where X is the set of test ratings, and jXj denotes the cardinality of
the set X. Comparing with MAE, RMSE is useful to identify undesir-
ably large errors. In general, smaller MAE and RMSE values indicate
better accuracy. In addition, the rating coverage (RC) is usually
defined as the ratio of the number (PR) of predictable ratings over
that of all test ratings, given by:

RC ¼ PR
jXj : ð17Þ

Note that the performance of the k-medoids algorithm is sensitive
to the number k of clusters and the initially selected medoids. Given
9 In case of value 0, the setting we use is c ¼ 1=n, where n is the number of features
used for regression.

http://www.cs.sfu.ca/sja25/personal/datasets/
http://www.librec.net/datasets.html

22 G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27
that different data sets have different statistics, especially the
amount of ratings and trust information, the value of k is varied
in different ranges for different data sets. More specifically, the
values of k are varied from 50 to 500 with step 50 in Flixster, and
from 10 to 100 with step 10 in FilmTrust and Epinions. In addition,
each method is executed five times and its results averaged.

6.3. Effect of categorized features

We investigate the impact of different categories of features on
the predictive performance. To facilitate the discussion, we denote
U, I, P as user-, item- and prediction-based features, respectively,
and concatenate these letters to represent different combinations
of categorized features, e.g., UI meaning that both user- and
item-related features are used whereas prediction-related features
are not. The results on all the data sets are illustrated in Fig. 3.
Although the differences among all these variants in performance
are not significant and vary, the combination of UI achieves consis-
tently the best accuracy on the three data sets. Since the trends on
Flixster and FilmTrust are more clear and consistent, we base our
 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 50 100 150 200 250 300 350 400 450 500

M
AE

number of clusters

U
I

P
UI

UP
IP

UIP

(a) Flixster (MAE)

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 10 20 30 40 50 60 70 80 90 100

M
AE

number of clusters

U
I

P
UI

UP
IP

UIP

(c) Epinions (MAE)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 50 100 150 200 250 300 350 400 450 500

R
M

SE

number of clusters

U
I

P
UI

UP
IP

UIP

(e) FilmTrust (RMSE)

Fig. 3. The effect of categorized features in
conclusions on their performance. Specifically, for a single category
of features, user-related features (U) perform better than item-
related ones (I) which are superior to the prediction-related (P).
One possible explanation is that our method can be seen as a
user-based approach in distinguishing user clusters and hence
determining predictions. For the combinations of categorized
features, UI outperforms all the others, including all the possible
features UIP. Two points can be made: (1) more features do not
necessarily result in better performance, rather, noisy features (P)
could decline the accuracy; (2) a proper prediction is more relevant
with the nature of the active user and the target item themselves
than how the prediction is generated.

6.4. Effect of the SVR model

The second series of experiments study the effect of the SVR
model used in our approach, comparing with the trivial strategy
of the average to determine a prediction (denoted by ‘Avg’). The
results on the three data sets are shown in Fig. 4. It can be seen that
our method with the SVR model (MV) consistently and
 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 10 20 30 40 50 60 70 80 90 100

M
AE

number of clusters

U
I

P
UI

UP
IP

UIP

(b) FilmTrust (MAE)

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 50 100 150 200 250 300 350 400 450 500

R
M

SE

number of clusters

U
I

P
UI

UP
IP

UIP

(d) Flixster (RMSE)

 1.34
 1.35
 1.36
 1.37
 1.38
 1.39
 1.4

 1.41
 1.42
 1.43
 1.44
 1.45

 50 100 150 200 250 300 350 400 450 500

R
M

SE

number of clusters

U
I

P
UI

UP
IP

UIP

(f) Epinions (RMSE)

our approach on different data sets.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 50 100 150 200 250 300 350 400 450 500

M
AE

number of clusters

MV
Avg

(a) Flixster (MAE)

 0.705

 0.71

 0.715

 0.72

 0.725

 0.73

 0.735

 0.74

 0.745

 0.75

 10 20 30 40 50 60 70 80 90 100

M
AE

number of clusters

MV
Avg

(b) FilmTrust (MAE)

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 10 20 30 40 50 60 70 80 90 100

M
AE

number of clusters

MV
Avg

(c) Epinions (MAE)

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 50 100 150 200 250 300 350 400 450 500

R
M

SE

number of clusters

MV
Avg

(d) Flixster (RMSE)

 0.905
 0.91

 0.915
 0.92

 0.925
 0.93

 0.935
 0.94

 0.945
 0.95

 0.955
 0.96

 10 20 30 40 50 60 70 80 90 100

R
M

SE

number of clusters

MV
Avg

(e) FilmTrust (RMSE)

 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 10 20 30 40 50 60 70 80 90 100

R
M

SE

number of clusters

MV
Avg

(f) Epinions (RMSE)

Fig. 4. The effect of the SVR model in our approach on different data sets.

G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27 23
significantly perform better than the variant of ‘Avg’, as the
number of clusters gradually increases. Hence, it is important for
our method to involve the SVR model in order to achieve a proper
and accurate prediction from those of two possible clusters.

6.5. Comparison with other approaches

We apply the multiview k-medoids and the other methods on
the three real-world data sets to investigate their predictive
performance in terms of accuracy and coverage. Specifically, we
take the data of users who have rated at least five items or speci-
fied at least five trusted neighbors as the training data in order
to ensure reliable clustering. The performance on different data
sets is illustrated in Fig. 5.

The results show that the multiview clustering method (MV)
consistently achieves significant better performance than the
counterparts in terms of both accuracy and rating coverage.
Specifically, as the number of clusters increases, the performance
on Flixster and FilmTrust is decreased accordingly. This is because
less similar users can be identified within each cluster when more
clusters are generated. However, on Epinions the performance is
varied and tends to be relatively stable as the number of clusters
increases. This may be due to the extreme sparsity of the data
relative to the other data sets (see Table 2). Hence, there are few
users who can be clustered and they are likely to be clustered in
the same group. The performance varies because of the different
initially selected k medoids in each iteration. In this regard, the
performance on Epinions may indicate more about the robustness
of algorithms than that in the other data sets.

The trends of accuracy of different methods are consistently
observed in all data sets in terms of both MAE and RMSE. Of the
methods that cluster users only based on user similarity (i.e., KCF
and KCFT), KCFT generally outperforms the KCF method on Flixster
and FilmTrust since the former takes into consideration trust values
when predicting items’ ratings whereas the latter does not. Hence,
the weights of users in KCFT can be computed more accurately
because only those who obtain both high similarity and trust (see
Eq. (5)) will be regarded as more important users. On Epinions,
the overall performance of the two methods is comparable, but
KCFT tends to be more stable with less variances, especially when
the number of clusters is less than 30. For the method (KTrust) that
only uses trust information to cluster users, its performance varies
in different data sets compared with that of KCF and KCFT. KTrust
performs better than KCF and KCFT on Flixster and Epinions, but
worse on FilmTrust. In other words, trust is more effective than
similarity on Flixster and Epinions but not on FilmTrust. Hence,
the conclusion drawn from the results is that the utility of trust
may not be the same in different data sets and may depend on
the distribution of the trust information. This also provides one
more support for us to combine both similarity and trust to further
improve the recommendation performance. As expected, this com-
bination (MV) achieves the best accuracy in all data sets. Comparing
with the second best method in each data set, the maximum
improvements in accuracy are up to 0.04 (in MAE) and 0.06 (in
RMSE) on all three data sets. Koren [14] points out that even small
decrements of predictive errors may lead to significant improve-
ments in real applications. Therefore, the achievements that we
obtain are important. Statistically, we conduct the two-sample
paired t-tests (with confidence 0.95) between the MV method and
the other methods to demonstrate the significance of improve-
ments. The alternative hypothesis is that the mean of MAE (RMSE)
derived by MV is less than that derived by other methods. The results
in all the data sets are illustrated in Table 3. It is observed that since
all the p values are quite small in term of both MAE and RMSE, the
null hypothesis will be rejected and the alternative is accepted. In
other words, our approach outperforms the others, and the
improvement is statistically significant (at the confidence level
0.95).

Rating coverage provides another dimension to compare the
performance of different methods. It indicates the extent to which
the ratings of target items are predictable. The results are
presented in Fig. 5(g)–(i). Specifically, the trust-only method
(KTrust) covers the least items due to the small amount of trust
information relative to user ratings on Flixster and FilmTrust (see

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 50 100 150 200 250 300 350 400 450 500

M
AE

number of clusters

KCF
KCFT

KTrust
MV

(a) Flixster (MAE)

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 10 20 30 40 50 60 70 80 90 100

M
AE

number of clusters

KCF
KCFT

KTrust
MV

(b) FilmTrust (MAE)

 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16
 1.18

 10 20 30 40 50 60 70 80 90 100

M
AE

number of clusters

KCF
KCFT

KTrust
MV

(c) Epinions (MAE)

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 50 100 150 200 250 300 350 400 450 500

R
M

SE

number of clusters

KCF
KCFT

KTrust
MV

(d) Flixster (RMSE)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 10 20 30 40 50 60 70 80 90 100

R
M

SE

number of clusters

KCF
KCFT

KTrust
MV

(e) FilmTrust (RMSE)

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 10 20 30 40 50 60 70 80 90 100

R
M

SE

number of clusters

KCF
KCFT

KTrust
MV

(f) Epinions (RMSE)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400 450 500

ra
tin

g
co

ve
ra

ge

number of clusters

KCF
KCFT

KTrust
MV

(g) Flixster (RC)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60 70 80 90 100

ra
tin

g
co

ve
ra

ge

number of clusters

KCF
KCFT

KTrust
MV

(h) FilmTrust (RC)

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11

 10 20 30 40 50 60 70 80 90 100

ra
tin

g
co

ve
ra

ge

number of clusters

KCF
KCFT

KTrust
MV

(i) Epinions (RC)

Fig. 5. The performance of all the methods on different data sets.

Table 3
The significance t-tests in all data sets.

Methods df t p-value

Flixster (MAE) MV vs. KCF 9 �21.0731 < 10�8

MV vs. KCFT 9 �29.6059 < 10�9

MV vs. KTrust 9 �18.0801 < 10�7

(RMSE) MV vs. KCF 9 �19.3386 < 10�8

MV vs. KCFT 9 �25.7053 < 10�9

MV vs. KTrust 9 �5.6177 < 0:001

FilmTrust (MAE) MV vs. KCF 9 �5.5937 < 0:001
MV vs. KCFT 9 �7.9514 < 10�4

MV vs. KTrust 9 �55.6413 < 10�12

(RMSE) MV vs. KCF 9 �4.2349 <0.01
MV vs. KCFT 9 �3.4091 < 0:01
MV vs. KTrust 9 �44.8339 < 10�11

Epinions (MAE) MV vs. KCF 9 �7.4795 < 10�4

MV vs. KCFT 9 �16.0826 < 10�7

MV vs. KTrust 9 �8.7858 < 10�5

(RMSE) MV vs. KCF 9 �11.1419 < 10�6

MV vs. KCFT 9 �23.9154 < 10�9

MV vs. KTrust 9 �10.7601 < 10�6

24 G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27
Table 2). Similarity-based approaches achieve better coverage than
the KTrust method. However, in the sparse case (i.e., Epinions),
trust information helps cover more items than ratings do, and as
the number of clusters increases, the coverage decreases
accordingly. Since user weights can also depend on trust, KCFT
outperforms KCF in coverage in all data sets. Further, for the
multiview clustering method (MV), since the clusters obtained
from similarity and the clusters generated from trust are combined
together, more users can be identified for predictions and hence
more items can be recommended to the active users. Consistently,
the MV method obtains the highest rating coverage and up to 20%
improvements relative to the second best method on Flixster and
FilmTrust and up to 5% on Epinions. In conclusion, our multiview
clustering method achieves the best performance both in accuracy
and coverage, comparing with other single view-based clustering
methods.

6.6. Performance for cold users

We next investigate the effectiveness of our approach in dealing
with cold-start users. Specifically, the users who have rated less
than 5 items (including users who rated no items) in the training
set are chosen and their test ratings are used as the test set. As
there is no other clustering-based approach that has been
proposed to handle the cold users, the most commonly adopted
strategy is to take the average of predictions from all the clusters
as predictions. We denote it as ‘Avg’ for simplicity. Note that we
did not use Epinions data set because only few users (70 out of

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

M
AE

alpha

MAE
RC

(a) Flixster (MAE, RC)

 1.21

 1.215

 1.22

 1.225

 1.23

 1.235

 1.24

 0 0.2 0.4 0.6 0.8 1

R
M

SE

alpha

RMSE

(b) Flixster (RMSE)

 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0 0.2 0.4 0.6 0.8 1

M
AE

alpha

MAE
RC

(c) FilmTrust (MAE, RC)

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0 0.2 0.4 0.6 0.8 1

R
M

SE

alpha

RMSE

(d) FilmTrust (RMSE)

Fig. 6. The effect of varying different values of a on Flixster and FilmTrust.

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 50 100 150 200 250 300 350 400 450 500

M
AE

number of clusters

Avg
MV

(a) Flixster (MAE)

 1.21

 1.215

 1.22

 1.225

 1.23

 1.235

 1.24

 1.245

 1.25

 50 100 150 200 250 300 350 400 450 500

R
M

SE

number of clusters

Avg
MV

(b) Flixster (RMSE)

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 10 20 30 40 50 60 70 80 90 100

M
AE

number of clusters

Avg
MV

(c) FilmTrust (MAE)

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 10 20 30 40 50 60 70 80 90 100

R
M

SE

number of clusters

Avg
MV

(d) FilmTrust (RMSE)

Fig. 7. The performance of our method in cold conditions on Flixster and FilmTrust.

G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27 25

26 G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27
503 test users) have trust information, and hence the resultant
performance may not be representative.

6.6.1. Effect of parameter a
To select a proper value for parameter a (i.e., the importance of

trust-based cluster likelihood) in Eq. (14), we first fix the number
of clusters in each data set, and adjust the settings of a from 0.0
to 1.0 stepped by 0.1. The setting resulting in the best performance
(both in accuracy and coverage) will be adopted for the latter
experiments. More specifically, we fix k ¼ 100 on Flixster, and
k ¼ 50 on FilmTrust. The performance of varying different values
of a is illustrated in Fig. 6. The results on Flixster show that varying
a values will not significantly influence the predictive accuracy
both in MAE and RMSE, but have a great impact on the rating
coverage when a 2 ½0;0:1�. Since a indicates the importance of
trust-based cluster likelihood in determining the cluster weights,
we can see that incorporating such likelihood (a > 0) can improve
the rating coverage while maintaining competitive accuracy. Spe-
cifically, we select a ¼ 0:7 as the best setting considering both
accuracy and coverage. Similar results are observed on FilmTrust,
where the best value for a is 0.6.

6.6.2. Overall performance
Adopting these settings of a, we then tune the number of

clusters to show the overall performance in the cold start scenario.
The results on Flixster and FilmTrust are presented in Fig. 7. It is
noted that our method is capable of achieving significantly better
accuracy across over the two data sets in comparison with the
baseline strategy, demonstrating the effectiveness of our approach
in handling cold users.
7. Conclusion and future work

Recommender systems have become ubiquitous across the web.
This article proposed a multiview clustering method that clustered
users both from the view of rating-based similarity and from the
view of connection-based social trust, aiming to alleviate the issues
of clustering-based approaches in recommender systems, i.e., the
relatively low accuracy and coverage. To the authors’ best
knowledge, we are the first to develop a multiview clustering algo-
rithm for recommender systems using both users’ ratings and trust
information. Specifically, the users were iteratively clustered
according to similarity-based distances and trust-based distances
by applying a classic k-medoids method until stable clusters were
obtained. Then, the clusters generated based on similarity and the
clusters generated based on trust were combined together to
obtain the final clusters. A support vector regression method was
employed to determine a proper prediction in the case where
two predictions were generated for the users who were grouped
in two different clusters due to the cluster combination. For this
purpose, we proposed and identified a number of user-, item-
and prediction-related features in order to describe the character-
istics of user-item predictions. In addition, to accommodate the
cold users who cannot be clustered and the issue of which has
not been address in the previous works, we proposed a probabilis-
tic method to identify the likelihood of belonging to each possible
cluster using both ratings and trust information.

The experimental results on three real-world data sets showed
that: (1) the combination of user- and item-related features were
the most useful in determining a proper prediction; (2) the
proposed support vector regression worked much better than a
simple baseline scheme; (3) our method outperformed other
approaches in term of both the accuracy and coverage; and (4)
the probabilistic method can effectively handle the issue of cold-
start users. To sum up, the proposed method effectively enhances
clustering-based methods by virtue of the multiviews of trust
and similarity, moving clustering-based recommender systems
closer toward practical use.

The present work leverages trust information for users who can
be connected in the trust network. One requirement of the
proposed multiview clustering approach is that both user–item
ratings and user–user trust information are available in the system
such that users can be clustered according to different views of
user preferences. However, in a general form of multiview
clustering, it is possible to cluster users according to all kinds of
information sources—rather than subject to ratings and social trust
only—which are able to describe user preferences such as prior rat-
ings [11]. In other words, the multiview clustering approach may
be applicable to the situations where at least two kinds of informa-
tion sources describing user preferences are available; otherwise it
is not applicable.

Thus, one potential limitation to the present work is that we
only consider the situations involving ratings and trust, although
it may be straightforward to revise or extend it to integrate other
information sources. Another limitation is that we adopt a
relatively simple method to compute continuous trust values
(see Eq. (3)). For future research, we intend to consider a more
sophisticated trust inference approach and to consider the use of
implicit trust links to enrich user trust information. It will also
be interesting to empirically verify our analysis regarding the effect
of � (see Eq. (11)) on predictive performance. To cope with cold
users, we made an assumption in Section 5.1 that ratings on a
specific item given by users within a cluster follow a Gaussian
distribution. For future work, we will investigate if such an
assumption is valid for all the users.

Acknowledgements

Guibing Guo thanks the Institute for Media Innovation for a
Ph.D. grant at Nanyang Technological University, Singapore. Neil
Yorke-Smith thanks the Operations group at the Judge Business
School and the fellowship at St Edmund’s College, Cambridge. We
also thank the anonymous reviewers for their comments which
have helped improve the article from its original version.

References

[1] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions, IEEE Trans.
Knowl. Data Eng. (TKDE) 17 (2005) 734–749.

[2] R.M. Bell, Y. Koren, Lessons from the netflix prize challenge, ACM SIGKDD
Explor. Newsl. 9 (2007) 75–79.

[3] A. Bellogín, J. Parapar, Using graph partitioning techniques for neighbour
selection in user-based collaborative filtering, in: Proceedings of the 6th ACM
Conference on Recommender Systems (RecSys), 2012, pp. 213–216.

[4] S. Bickel, T. Scheffer, Multi-view clustering, in: Proceedings of the IEEE
International Conference on Data Mining (ICDM), 2004.

[5] C. Bishop, et al., Pattern Recognition and Machine Learning, vol. 4, 2006.
[6] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey, ACM Comput.

Surv. (CSUR) 41 (2009) 15.
[7] H. Drucker, C.J. Burges, L. Kaufman, A. Smola, V. Vapnik, Support vector

regression machines, Advan. Neur. Inform. Process. Syst. (1997) 155–161.
[8] T. DuBois, J. Golbeck, J. Kleint, A. Srinivasan, Improving recommendation

accuracy by clustering social networks with trust, Recomm. Syst. Soc. Web
(2009) 1–8.

[9] G. Guo, Integrating trust and similarity to ameliorate the data sparsity and cold
start for recommender systems, in: Proceedings of the 7th ACM Conference on
Recommender Systems (RecSys), 2013.

[10] G. Guo, J. Zhang, D. Thalmann, Merging trust in collaborative filtering to
alleviate data sparsity and cold start, Knowl.-Based Syst. (KBS) 57 (2014) 57–
68.

[11] G. Guo, J. Zhang, D. Thalmann, N. Yorke-Smith, Prior ratings: a new
information source for recommender systems in e-commerce, in:
Proceedings of the 7th ACM Conference on Recommender Systems (RecSys),
2013, pp. 383–386.

[12] G. Guo, J. Zhang, N. Yorke-Smith, A novel bayesian similarity measure for
recommender systems, in: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), 2013, pp. 2619–2625.

http://refhub.elsevier.com/S0950-7051(14)00391-8/h0005
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0005
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0005
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0010
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0010
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0030
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0030
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0035
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0035
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0040
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0040
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0040
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0050
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0050
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0050

G. Guo et al. / Knowledge-Based Systems 74 (2015) 14–27 27
[13] M. Jamali, M. Ester, A matrix factorization technique with trust propagation for
recommendation in social networks, in: Proceedings of the 4th ACM
Conference on Recommender Systems (RecSys), 2010, pp. 135–142.

[14] Y. Koren, Factor in the neighbors: scalable and accurate collaborative filtering,
ACM Trans. Knowl. Discov. Data (TKDD) 4 (2010) 1:1–1:24.

[15] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender
systems, Computer 42 (2009) 30–37.

[16] X. Li, T. Murata, Using multidimensional clustering based collaborative
filtering approach improving recommendation diversity, in: Proceedings of
the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology (WI-IAT), 2012, pp. 169–174.

[17] H. Ma, I. King, M. Lyu, Learning to recommend with social trust ensemble, in:
Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), ACM, 2009, pp. 203–210.

[18] P. Massa, P. Avesani, Trust-aware recommender systems, in: Proceedings of the
2007 ACM Conference on Recommender Systems (RecSys), 2007, pp. 17–24.

[19] J. O’Donovan, B. Smyth, Trust in recommender systems, in: Proceedings of the
10th International Conference on Intelligent User Interfaces (IUI), 2005, pp.
167–174.

[20] H. Oufaida, O. Nouali, Exploiting semantic web technologies for recommender
systems a multi view recommendation engine, in: Proceedings of the 7th
Workshop on Intelligent Techniques for Web Personalization Recommender
Systems (ITWP), 2009.

[21] M. Pham, Y. Cao, R. Klamma, M. Jarke, A clustering approach for collaborative
filtering recommendation using social network analysis, J. Univ. Comp. Sci. 17
(2011) 583–604.

[22] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Recommender systems for large-scale
e-commerce: scalable neighborhood formation using clustering, in:
Proceedings of the 5th International Conference on Computer and
Information Technology (ICCIT), 2002, pp. 158–167.

[23] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond, the MIT Press, 2002.

[24] P. Singla, M. Richardson, Yes, there is a correlation: from social networks to
personal behavior on the web, in: Proceedings of the 17th International
Conference on World Wide Web (WWW), 2008, pp. 655–664.

[25] S. Vicente, C. Rother, V. Kolmogorov, Object cosegmentation, in: Proceeding of
the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2011, pp. 2217–2224.

[26] Y. Wang, M. Singh, Formal trust model for multiagent systems, in: Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI),
2007, pp. 1551–1556.

[27] D.J. Watts, Six Degrees: The Science of a Connected Age, WW Norton &
Company, 2004.

[28] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, Z. Chen, Scalable collaborative
filtering using cluster-based smoothing, in: Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 2005, pp. 114–121.

[29] B. Yang, Y. Lei, D. Liu, J. Liu, Social collaborative filtering by trust, in:
Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI), 2013, pp. 2747–2753.

[30] L. Zhen, G.Q. Huang, Z. Jiang, Recommender system based on workflow, Dec.
Supp. Syst. (DSS) 48 (2009) 237–245.

[31] L. Zhen, Z. Jiang, H. Song, Distributed recommender for peer-to-peer
knowledge sharing, Inform. Sci. 180 (2010) 3546–3561.

http://refhub.elsevier.com/S0950-7051(14)00391-8/h0070
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0070
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0075
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0075
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0085
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0085
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0085
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0085
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0105
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0105
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0105
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0115
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0115
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0115
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0135
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0135
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0135
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0150
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0150
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0155
http://refhub.elsevier.com/S0950-7051(14)00391-8/h0155

	Leveraging multiviews of trust and similarity to enhance clustering-based recommender systems
	1 Introduction
	2 Related work
	3 Multiview clustering
	3.1 Multiview clustering algorithm
	3.2 Complexity analysis
	3.3 An example

	4 Prediction by support vector regression
	4.1 Generating predictions
	4.2 Prediction regression
	4.2.1 User-related features
	4.2.2 Item-related features
	4.2.3 Prediction-related features

	5 Handling cold users
	5.1 Rating-based cluster likelihood
	5.2 Trust-based cluster likelihood
	5.3 Generating predictions

	6 Evaluation
	6.1 Data sets
	6.2 Experimental settings
	6.3 Effect of categorized features
	6.4 Effect of the SVR model
	6.5 Comparison with other approaches
	6.6 Performance for cold users
	6.6.1 Effect of parameter α
	6.6.2 Overall performance

	7 Conclusion and future work
	Acknowledgements
	References

