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Abstract—PGP Web of Trust where users can sign digital
signatures on public key certificates of other users has been
successfully applied in securing emails and files transmitted over
the Internet. However, its rigorous restrictions on utilizable trust
relationships and acceptable signatures limit its performance. In
this paper, we first make some modification and extension to
PGP Web of Trust by relaxing those constraints. In addition, we
propose a novel method to further expand trusted neighborhood
of users by merging the signatures of the trusted neighbors and
finding the similar users based on the merged signature set.
Confirmed by the experiments carried out in different simulated
real-life scenarios, our method applied to both the modified and
extended PGP methods can improve their performance. With
the expansion of trusted neighborhood, the performance of the
original PGP Web of Trust is also improved considerably.

I. INTRODUCTION

Pretty Good Privacy (PGP) is widely accepted as the first

successful attempt to make cryptography freely available to

the public [1]. It does not rely on a trusted authority to

cryptographically create a trusted digital certificate to specify

the real owner of a public key. Instead, PGP allows the user

who has a private key to create a digital certificate for the

corresponding public key. To address the issue where the user

may specify an arbitrary (unreal) owner for the public key

in the certificate, PGP allows other users to digitally sign

certificates that they believe to be authentic, i.e. the specified

owner in the certificate is indeed the real owner of the public

key. A user can verify a public key by checking whether there

are digital signatures signed by other users whom she trusts.

This solution is referred to as PGP Web of Trust.

However, one limitation about PGP Web of Trust is that it

imposes restrictions on the signature feedbacks of certificates.

More specifically, when a user encounters a certificate, if she

chooses to sign the certificate, she can only sign it with a

positive feedback stating that she believes the certificate to be

authentic; therefore no one is able to directly state the opposite

opinion. Another limitation is that PGP makes use of only

direct trust relationships between users. To be more specific,

only when a digital signature is signed by other users whom

the user directly trusts, the user will believe the certificate

to be authentic. In other words, PGP does not consider the

transitivity property of trust. The performance of PGP is thus

limited by the two restrictions. Our work is aimed at improving

the performance of PGP by eliminating these restrictions and

exploiting potential indirect trust relationships of users.

In this paper, we first modify PGP Web of Trust to accept

negative feedbacks in signatures from users indicating that

a certificate is believed to be inauthentic. Accordingly, the

way of verifying the authenticity of a certificate based on

provided feedbacks is also modified. We then extend PGP

Web of Trust by also considering indirect trust relationships

of users. Indirect trust is computed using the concept of trust

propagation [2]. In this way, the pool of other users trusted by

a user (called trusted neighborhood) may get expanded.

More importantly, we propose a novel method to further

expand trusted neighborhood. It first merges the feedbacks on

certificates provided by trusted neighbors of an active user,

which may include both directly trusted neighbors specified

by the user (including herself because the user should trust

herself) and indirectly trusted ones identified by trust propa-

gation used in the extended PGP Web of Trust. By relying

on the majority opinion and ensuring the high consistency

among the feedbacks, the merged feedback set can then well

represent the opinions of this active user. Based on the merged

feedback set, our method then finds other similar users of the

active user who are not in the original trusted neighborhood. In

this way, the trusted neighborhood is further expanded. Thus,

the essence of our approach is to enlarge the original trusted

neighborhood such that much more reliable information is

available during the course of verifying the target certificates.

To evaluate the performance (both coverage and accuracy)

of our proposed method and different versions of PGP, we

simulate an environment where a large number of users

create certificates for public keys and sign the certificates

with digital signatures. Different scenarios are simulated to

represent potential real-life situations. Experimental results

confirm that both the modified and extended PGP can well

increase the coverage, but the accuracy is often decreased. Our

method, on another hand, can further largely improve both the

coverage and accuracy of the modified and extended PGP, in

most of the simulated scenarios. Compared with the original

PGP, applying our method of expanding trusted neighborhood

can not only increase the coverage but also the accuracy. Our

method thus represents an important improvement on PGP

Web of Trust, which can potentially widen its usage.

II. RELATED WORK

The fundamental question that we attempt to answer in this

work is how to expand trusted neighborhood of a user by

exploring indirect trust relationships between this user and
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others in an accurate manner. By doing so, the performance

of PGP Web of Trust can be much improved in terms of

both coverage and accuracy. Different attempts have been

proposed to explore indirect trust relationship. A common way

to compute such indirect trust is trust propagation [2], where

trust in the stranger is calculated iteratively according to the

trust a user places in a third user and the trust the third user

places in the stranger. Trust is then computed along each chain

and aggregated for all paths. Guha et al. [3] categorize trust

propagation into four basic types of propagations: direct prop-

agation, co-citation, transpose trust and trust coupling. Direct

propagation is the same as the trust propagation discussed

earlier. In transpose trust, if A trusts B then C trusting B
implies that C also trusts A. Transpose trust is interesting as

it connects two users who do not directly trust each other,

on the basis of a common user. However, the authors do not

specify the extent to which this kind of propagation should be

taken into account and how much trust C should place in A.

Huang and Nicol [4] have applied the direct trust propaga-

tion method on PGP Web of Trust. In our work, we also apply

the direct propagation method to extend the modified PGP Web

of Trust. However, our experiments show that this extension

can only well improve the coverage of PGP Web of Trust, but

often not the accuracy. On another hand, our proposed method

for further expanding trusted neighborhood can improve both

the coverage and accuracy of the extended PGP Web of Trust.

Our method is in fact similar to both the direct propagation and

the transpose trust to some extent. To illustrate, suppose a user

A has a trusted neighbor B. Our method finds another user C
who is similar to B. The assumption here is that if two users

are similar, they should trust each other. Thus, the similar users

B and C trust each other. From the direction where B trusts

C, our method is similar to the direct propagation, but from

the opposite direction, our method is similar to the transpose

trust. The difference is that user B in our method is a virtual

user created based on the trusted neighbors of A in a way that

A can (almost) fully trust B. Then, the similarity between B
and C can be equivalent to the trust that A can place in C.

Our method of expanding trusted neighborhood is somewhat

similar in spirit to classic collaborative filtering [5] widely used

in the area of recommender systems. Collaborative filtering

first finds a set of similar users to an active user. It then

provides recommendations of items based on the similar users’

feedback about the items. We expand trusted neighborhood by

making use of this concept that similar users can be trusted to

provide accurate prediction about whether a target certificate is

authentic. In fact, some studies, for example [6] have already

proposed the idea of dynamically updating the trust values

based on how similar the feedback received from other users

is to the user’s own experience. The similarity of feedbacks

provided by two users has also been successfully applied to

compute the trust between the two users [7].

III. MODELING ORIGINAL PGP WEB OF TRUST

In this section, we summarize and mathematically model

the original PGP Web of Trust (refer to [1] for more details).

All public key certificates created by every user form the target

space T . Every public key certificate is a target t ∈ T . Without

loss of generality, there is a universal truth for every target t,
i.e. whether or not it is authentic.

A user who digitally signs a public key certificate is a

feedback provider p. All feedback providers form the feedback

provider space P . A user who verifies a public key certificate

is a relying entity e. All relying entities form the relying entity

space E . Note that a user can be both a feedback provider and

a relying entity. A digital signature signed on a public key

certificate corresponds to a piece of feedback f = (p, t, s).
Note that the score s is not explicitly stated but implicitly

implied as “I believe the public key certificate is authentic”.

This opinion is denoted by s = 1. Thus the score space

S = {1}. All digital signatures signed by a feedback provider

p correspond to Fp. All signatures accessible to a relying entity

e form the view of this relying entity, i.e. Ve.

A relying entity e also directly assigns every feedback

provider p with a trust value as follows:

Be(p) =

⎧⎨
⎩

1 if p is completely trusted;

1/2 if p is marginally trusted;

0 if p is untrusted or unknown.

(1)

Then, a group of trusted neighbors is selected as:

T N e = {p ∈ P : Be(p) ≥ 1/2}. (2)

A user (acting as a relying entity e) verifying a public key

certificate (a target t0) corresponds to the generation of a piece

of advice concerning the target t0 for the relying entity e. This

process by default1 is defined as:

re(t0) =

⎧⎨
⎩

1 if cc ≥ 1 or mc ≥ 2;
1/2 if cc = 0 and 0 < mc < 2;
0 if cc = 0 and mc = 0,

(3)

where cc = |{(f t0
p ∈ Ve, Be(p)) : Be(p) = 1}| and mc =

|{(f t0
p ∈ Ve, Be(p)) : Be(p) = 1/2}|. Finally, the relying

entity e accepts the public key certificate t0 only if re(t0) = 1.

IV. MODIFICATION AND EXTENSION TO ORIGINAL PGP

As can be seen from the previous section, the original PGP

Web of Trust limits the score space to S = {1} and makes

use of only direct trust relationships of users. In this section,

we modify it to accept the score of -1 implying that a public

key certificate is believed to be inauthentic. In addition, we

extend it to also consider indirect trust relationships.

A. Modified PGP Web of Trust

Recall that there is only one value in the score space S of the

original PGP Web of Trust, i.e. s = 1. This limitation disables

a feedback provider from explicitly expressing her belief that a

public key certificate is not authentic. Besides, it also disables

discovery of any conflicting feedback. Therefore we propose

to allow a feedback provider to explicitly express her different

opinions on the authenticity of a public key certificate. In more

technical detail, we propose that instead of signing a public key

certificate, a user digitally signs a tuple containing this public

1When estimating re(t0), two thresholds for cc and mc are adjustable. By
default they are set to 1 and 2, respectively.
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key certificate and a score s ∈ {1,−1}, where s = −1 denotes

that she believes the certificate is not authentic. Now the new

score space is S = {1,−1}. Note that the score space S can

have more values to represent user’s more granular belief in

the authenticity of a public key certificate. But in this paper, we

only use two values, for simplicity. This modification enables

us to further modify PGP Web of Trust to adopt our proposed

approach of expanding trusted neighborhood.
Due to the introduction of the new score −1, the method

of verifying a target public key certificate t0 (see Equation 3)

also needs to be modified. The idea of the new method is to

first weight the score in each feedback by the trustworthiness

of the feedback provider and sum up the weights of scores

1 and −1 respectively. Then, the two total weights will be

aggregated to produce the advice as the authenticity of t0 for

the relying entity e. Formally, let w1 denote the total weight

of score 1 and w−1 the total wight of score −1. The advice

for entity e regarding target t0 is then given by:

re(t0) =
w1 − w−1

w1 + w−1
, (4)

where w1 = |∑Be(p) ∗ sp|, w−1 = |∑Be(p
′) ∗ sp′ |,

p, p′ ∈ T N e, sp = 1, and sp′ = −1. This method ensures

that the calculated result re(t0) is in [−1, 1] where 1 and −1
mean that the target t0 is completely authentic and inauthentic,

respectively. The computational cost of the method is also low.

B. Extended PGP Web of Trust
In the original PGP Web of Trust, the trusted neighborhood

T N of a user contains only the trusted neighbors who are

directly signed or specified by the user (see Equations 1 and 2).

This works well for an experienced user who has specified her

trust in many other users (feedback providers). However, for a

newcomer who just joined the system and signed only a few

users, the original PGP may not be able to provide good advice

about the authenticity of many certificates. To address this

issue, we extend the original PGP by also considering indirect

trust relationships among users. Indirect trust is inferred based

on the existing direct trust relationships of all users in the

system and through the propagation of trust.2 In this way,

users who are not directly signed or specified by the user but

turn out to be highly trustworthy can be found and included

in the user’s trusted neighborhood.
More specifically, based on the directly trusted neighbor-

hood of all users, a directed graph can be constructed to

connect the users (as nodes) together. An edge from a user to

another user in the graph represents the direct trust relationship

from the first user to the second one. By traversing the graph,

there may be multiple paths from a user e to a target user

p who is not directly connected with (or directly trusted by)

e. Along the i-th path, user e’s trust in p can be calculated

according to the well-known computational trust model in [2]:

CTi = Be(p2)
m−1∏
j=2

Bpj
(pj+1) (5)

2We assume a trusted central server in charge of the computation of indirect
trust and the expansion of trusted neighborhood in the next section. However,
we do not assume the server knows the real owner of public keys.

where pj is the j-th node on the path, p1 = e, and pm = p (the

target user). Note that it is necessary to set a proper parameter

to constrain the maximum number of nodes on a path. One

concern is the computational complexity. Another concern is

that trust propagation may result in unreliable outcomes if the

paths are getting too long. It is set 4 in our experiments.

Having the trust of e in p along each valid path, the overall

trust e has in p can be aggregated by averaging the trust on

each path as Be(p) = 1
n

∑n
i=1 CTi. Then, a group of all

trusted neighbors is selected as:

T N e
′
= T N e

⋃
{p ∈ P : p /∈ T N e, Be(p) ≥ θ}, (6)

where θ is a threshold for determining the minimum indirect

trust needed for a user to be included in the trusted neigh-

borhood. θ should normally be set to be relatively high, i.e.

θ ≥ 1/2, to minimize the effect of unreliable indirect trust

inference caused by the propagation of trust.

V. FURTHER EXPANSION OF TRUSTED NEIGHBORHOOD

In this section, we describe a novel method to further

expand trusted neighborhood based on direct trust identified

by users as well as indirect trust relationships inferred by trust

propagation. Our method first merges feedback provided by

trusted neighbors and then uses the merged feedback set to

find similar users who may become trusted neighbors.

In the first step, our method merges feedbacks provided by

trusted neighbors by converting the set of feedbacks provided

by the trusted neighbors (including the user herself) about

each certificate into a single feedback, if the number of

feedbacks about the certificate is large and the feedbacks

are consistent. More formally, for a user e with the trusted

neighborhood T N e, a set of feedback provided by the trusted

neighbors about a certificate t is denoted as F(t). We adapt

the confidence measure proposed by Wang and Singh [8]

to determine whether the set of feedbacks F(t) about the

certificate t can be merged as follows:

c(w1, w−1) =

∫ 1

0

| xw1(1− x)w−1∫ 1

0
xw1(1− x)w−1dx

− 1|dx (7)

The confidence c(w1, w−1) is high only when the number of

feedbacks (w1+w−1) is large and the feedbacks are consistent.

Only when the confidence c(w1, w−1) exceeds a predefined

threshold λ,3 the set of feedbacks about the certificate t will

be converted to a single feedback as follows:

f(t) =

{
1 if w1 ≥ w−1;

−1 otherwise.
(8)

By setting a high confidence threshold, we believe that

the merged feedback set from the feedbacks provided by the

trusted neighbors of a user e may be fully trusted by e or

can well represent e’s own opinions about certificates, for two

reasons. One reason is that the trusted neighbors who provide

the original set of feedbacks are already highly trusted by the

user e. Another reason is that the high confidence requirement

can further eliminate some potentially unreliable feedbacks.

3We will analyze the effect of the confidence threshold on the performance
of our method through experiments in Section VI.
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Thus, in the second step of our method, based on the merged

feedback vector, we find for the user e a set of similar users

by measuring the similarity of the merged feedback vector

with the feedback vectors of the other users. As similarity

has often been used to infer trust in the literature (see

Section II), the trusted neighborhood of user e can then be

expanded by including those similar users. More specifically,

let F ′
e denote the merged feedback vector of user e, and

Fu denote the feedback vector provided by user u. Assume

that
→
x and

→
y are two vectors in k-dimensional space, where

k = |{t ∈ T |fx(t) �= ∅, fy(t) �= ∅}|, fx(t) ∈ F ′
e and

fy(t) ∈ Fu. Then the similarity between two vectors F ′
e and

Fu can be measured by the cosine similarity measure [5]:

sim(F ′
e,Fu) =

∑k
i=1 fx(t)fy(t)√∑k

i=1 fx(t)
2
√∑k

i=1 fy(t)
2

(9)

If the similarity sim(F ′
e,Fu) exceeds a threshold γ, the user

u will be included in the trusted neighborhood of user e.

VI. EXPERIMENTAL EVALUATION

In this section, we carry out experiments to evaluate the

performance (both coverage and accuracy) of the original

PGP Web of Trust (denoted as OPGP), the modified version

(MPGP), the extended version (EPGP) and our method of

further expanding trusted neighborhood applied on the ex-

tended version (EPGP+). Our simulated environment involves

500 users, each of whom creates a public key certificate. A

certain percentage of these certificates may be inauthentic.

Each user can also be a feedback provider. As feedback

providers, users are categorized into three groups. In terms

of their honesty in signing certificates, they can be honest,

neutral or dishonest. Among all the certificates signed by

a honest feedback provider, 80% to 100% of them will

be truthfully signed. A percentage value will be randomly

chosen within this range for each honest feedback provider.

Similarly, among all the certificates signed by a neutral and

dishonest feedback provider, 40%-60% and 0%-20% of them

will be truthfully signed, respectively. Within each category of

feedback providers, some of them are experienced, medium

experienced or newbies. Experienced feedback providers have

signed 15%-20% of all certificates, medium experienced users

8%-13%, and newbies 0%-5%. Each user also indicates her

trust on another user when she signs the certificate created

by the other user. To reflect the real-life situation, some of

the users may make mistakes when specifying their trust on

others. Three different types of users are simulated: the ones

making many mistakes, the ones making a normal number of

mistakes and the ones making a few mistakes. For the users

who make many mistakes, the trustworthiness of 80%-100% of

others will be wrongly specified by the users. The percentage

ranges for the users making a normal number of mistakes and

a few mistakes are 40%-60% and 0%-20%, respectively. In

our experiments (Section VI-B), we vary the percentages of

honest, neutral and dishonest feedback providers, the percent-

ages of experienced, medium experienced users and newbies,

and the percentages of users who make many mistakes, a

normal number of mistakes and a few mistakes, respectively,

to create different possible real-life scenarios. Some other

relevant parameters are set as follows. The percentages of

authentic and inauthentic public key certificates are 70% and

30% respectively. And, the trust threshold θ for a user to be

included in a trusted neighborhood is set to 0.5 for both the

methods of EPGP and EPGP+ by default.
As mentioned earlier, the performance of different versions

of PGP Web of Trust can be evaluated based on two measures,

coverage and accuracy. Coverage measures the extension to

which a method is able to predict the authenticity of certifi-

cates. In our experiment, the authenticity of a certificate can

be predicted for a user if at least one of the feedback providers

who have signed the certificate is in the trusted neighborhood

of the user. Coverage can then be calculated by averaging

across all users the ratio of the predictable certificates to the

total number of certificates. Accuracy measures the extent to

which the method is able to provide accurate prediction. We

use the mean absolute error (MAE) to represent the accuracy:

MAE =

∑M
j=1[

1
Nj

∑Nj

i=1 |rj(ti)− g(ti)|]
M

, (10)

where Nj is the number of public certificates predictable to

user j and M is the total number of users (500 in our case).

rj(ti) is the estimated authenticity of the certificate ti by user

j, and g(ti) is the ground truth about the authenticity of ti.
Each experiment has been run for a sufficient number of times.

A. Choosing Proper Parameters
The main purpose of the first set of experiments is to

investigate how the performance of our approach (EPGP+) is

affected by different values of the parameters in our approach.

The two main parameters are the confidence threshold λ
and similarity threshold γ. As described in Section V, the

confidence threshold is to decide whether a set of feedbacks

provided by trusted neighbors for a particular certificate will

be merged into a single feedback. The similarity threshold

is to decide how similar a user needs to be with another

user in order to be added into the trusted neighborhood of

the second user. We fix one parameter and study another in

two separate experiments. In these experiments, we simulate

uniform scenario. More specifically, we have an equal number

of honest, neutral, and dishonest feedback providers. We also

have an equal number of experienced, medium experienced

and new users. The numbers of users who make many mis-

takes, a normal number of mistakes and a few mistakes are

also the same in this uniform scenario.
We first fix the similarity threshold to 0.8 and vary the

confidence parameter from 0.0 to 0.95. Results are shown

in Figure 1(a). From this figure, we can see that when the

confidence threshold increases from 0 up to 0.95, the coverage

of our approach increases first and then decreases. Similarly,

the accuracy also increases first and decreases later on. When

the confidence threshold is set very low, the feedbacks merged

from trusted neighbors may not be accurate. Using these

inaccurate feedbacks to find similar neighbors will result in

a smaller number of users being added into trusted neigh-

borhood. Thus, the coverage is low in this case. Since many
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Fig. 1. (a) Performance of Our Approach with Varying Confidence Threshold but with the Fixed Similarity Threshold of 0.8; (b) Performance of Our
Approach with Varying Similarity Threshold but with the Fixed Confidence Threshold of 0.7; (c) Performance of Our Approach with Varying Similarity
Threshold but with the Fixed Confidence Threshold of 0.2

merged feedbacks are inaccurate, the similar users found are

then in fact dishonest. The accuracy is thus decreased (i.e. the

MAE value is increased). When the confidence is set very high,

not many feedbacks will be merged. The number of similar

users found is thus also small. In consequence, the coverage is

low in this case. Because the size of the trusted neighborhood

is small, the accuracy will also not be high. As shown in

the figure, our approach improves the coverage and accuracy

of EPGP. More specifically, when the confidence threshold

is between 0.2 and 0.8, our approach improves the coverage

of EPGP. Our approach improves the accuracy of EPGP for

every possible confidence threshold. Based on these results,

we choose the confidence threshold of 0.7 where the accuracy

is the best and the coverage is relatively high.

We now fix the confidence threshold to 0.7 and vary the

similarity threshold from 0 to 0.95. Results are shown in

Figure 1(b). When the confidence threshold is set to the proper

value, the performance of our approach is not sensitive to

the similarity threshold. Our best theory for explaining this

phenomenon is that after setting the confidence threshold to the

proper value, the similar users included in the trusted neigh-

borhood are honest and well experienced so that further adding

more or less similar users into the trusted neighborhood will

not affect the performance much. Nevertheless, the similarity

threshold of around 0.6 gives relatively better performance. In

the experiments in Section VI-B, we will use the confidence

threshold of 0.7 and the similarity threshold of 0.6.

In order to show how the performance of our approach is

affected by the similarity threshold, in this experiment we

fix the confidence threshold to 0.2 and vary the similarity

threshold. The results in Figure 1(c) show that both the

coverage and accuracy decrease when the similarity threshold

increases from 0.0 to 0.95. When the similarity threshold

increases, the number of users being added into the trusted

neighborhoods will be smaller, thus the coverage will be lower.

Because the confidence threshold is set low, the accuracy of

merged feedbacks is also low. The similar users found based

on these merged feedbacks will be inaccurate as well. Thus,

the accuracy of our approach is decreased. Note that the

accuracy of our approach when setting both confidence and

similarity thresholds to 0.2 is 0.634, which is the best accuracy

in Figure 1(c). However, this accuracy is still worse than

that when setting confidence threshold to 0.7 and similarity

threshold to 0.6, which is 0.616 (see the accuracy of EPGP+

in the uniform scenario in Table I).

B. Effectiveness of Our Approach in Different Scenarios

We vary environmental parameters to create different pos-

sible real-life scenarios, to study the effectiveness of our

approach for handling those different situations, compared

with the other versions of PGP Web of Trust.

1) Uniform Scenario: Here, we present the experimental

results of our approach when choosing the proper parameters

(0.7 for the confidence threshold and 0.6 for the similarity

threshold) in the uniform scenario described in the previous

section. Results are summarized in Table I. We can see that

MPGP and EPGP can increase the coverage, but the accuracy

is much decreased because the inferred indirect trust of users is

less accurate compared to direct trust. Interestingly, although

the coverage of OPGP is low, its accuracy is higher compared

to MPGP and EPGP. The reason is that OPGP considers only

the feedback of 1 and thus less untruthful feedbacks will

be involved in the estimation of certificate authenticity. Our

approach EPGP+ improves both coverage and accuracy of

MPGP and EPGP. It is also much better than OPGP in terms

of both coverage and accuracy. These performance results in

the uniform scenario are used as a benchmark that will be

compared by other scenarios.

2) Ideal Scenario: We also inspect an ideal environment

where most users intend to be honest in signing certificates

and make only few mistakes when identifying directly trusted

neighbors. More specifically, the percentage of honest feed-

back providers is set to 0.8, neutral 0.1 and dishonest 0.1.

And the percentage of users making few mistakes is set to

0.8, a normal number of mistakes 0.1, and many mistakes also

0.1. The results in the Ideal Scenario column of Table I show

that the performance (especially accuracy) of all approaches is

substantially better in this scenario than the uniform scenario.

Both the coverage (0.962) and accuracy (0.195) of EPGP+

approach the perfect results.

3) Sparse Scenario: In this experiment, we create a sparse

scenario where many users are new to the system and they

have not signed many certificates yet. In particular, the system

involves only 10% of experienced users and 10% of medium
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TABLE I
PERFORMANCE OF APPROACHES FOR UNIFORM, IDEAL, SPARSE AND SUFFICIENT INFORMATION SCENARIOS

Uniform Scenario Ideal Scenario Sparse Scenario Sufficient Information
Approaches Coverage MAE Coverage MAE Coverage MAE Coverage MAE

OPGP 0.499±0.004 0.744±0.015 0.546±0.004 0.357±0.006 0.143±0.003 0.902±0.045 0.773±0.002 0.622±0.012
MPGP 0.626±0.004 0.788±0.016 0.676±0.003 0.300±0.008 0.223±0.005 0.825±0.017 0.856±0.002 0.782±0.009
EPGP 0.636±0.002 0.794±0.027 0.717±0.007 0.228±0.004 0.385±0.021 0.784±0.022 0.855±0.003 0.773±0.003

EPGP+ 0.839±0.008 0.616±0.018 0.962±0.012 0.195±0.008 0.646±0.033 0.709±0.021 0.953±0.007 0.559±0.025

TABLE II
PERFORMANCE OF APPROACHES FOR MANY MISTAKES AND HIGHLY MALICIOUS SCENARIOS

Many Mistakes Highly Malicious (a) Highly Malicious (b) Highly Malicious (c)
Approaches Coverage MAE Coverage MAE Coverage MAE Coverage MAE

OPGP 0.503±0.009 0.867±0.022 0.307±0.014 0.906±0.036 0.291±0.011 0.932±0.013 0.292±0.009 0.912±0.002
MPGP 0.633±0.003 0.913±0.023 0.512±0.012 1.320±0.027 0.501±0.012 1.359±0.029 0.504±0.005 1.343±0.039
EPGP 0.644±0.005 0.914±0.003 0.521±0.007 1.351±0.021 0.533±0.005 1.329±0.034 0.504±0.006 1.342±0.038

EPGP+ 0.827±0.017 0.814±0.053 0.701±0.013 1.502±0.024 0.534±0.008 1.414±0.018 0.676±0.009 1.498±0.037

experienced users. Up to 80% of users are newcomers. In this

case, the coverage of different approaches is lower as expected

(see the Sparse Scenario column of Table I). In this scenario,

the accuracy of EPGP+ is still better than both MPGP and

EPGP. Its coverage is also comparably sufficient. Compared

with OPGP, our EPGP+ has significantly larger coverage while

still maintaining better accuracy.

4) Scenario of Sufficient Information: We also examine

another scenario with sufficient information where the ma-

jority (80%) of the users are experienced feedback providers

who have singed a large number of certificates. Compared

with the uniform scenario, the coverage of all approaches is

considerably enhanced due to the large number of available

feedbacks (see the Sufficient Information column of Table I).

However, for OPGP, MPGP and EPGP, the accuracy is either

decreased or stays the similar. The accuracy of our EPGP+ is

still increased. Our approach can also effectively improve the

coverage and accuracy of OPGP, MPGP and EPGP.

5) Scenario of Many Mistakes: We then imitate a scenario

where many (80%) users make a lot of mistakes when they

sign direct trust in another user. In this case, the coverage of

different approaches stays the similar as that in the uniform

scenario (see the Scenario of Many Mistakes column in

Table II), whereas the accuracy has been largely decreased.

However, the accuracy of EPGP+ is still the best among all

the approaches in this scenario.

6) Highly Malicious Scenario: Finally, we simulate a

highly malicious situation in which there are 80% of feedback

providers are dishonest. In this kind of scenarios, our approach

does not show any advantages (see the Highly Malicious (a)

column in Table II). We then set confidence threshold to 1 and

the similarity threshold to 1 and adjust the trust threshold θ to

0.8 respectively. From the results in the Highly Malicious (b)

and (c) columns of Table II, we can notice that our EPGP+

does not hold any advantages either in this extreme case. We

also notice that both MPGP and EPGP do not work well either

in the highly malicious scenario. A reasonable explanation to

such phenomena is that when the environment is filled with

malicious users, the possibility of incorrectly inferring trusted

neighbors is high. As opposed to the other scenarios, we may

instead rely on other methods such as OPGP.

VII. CONCLUSIONS AND FUTURE WORK

To conclude, the main contributions of our current work

include: 1) the modification on PGP Web of Trust to also

accept negative feedbacks in digital signatures for public key

certificates indicating that the certificates are believed to be

inauthentic; 2) the extension on PGP Web of Trust to also

consider indirect trust relationships of users inferred through

trust propagation so that trusted neighborhood of users gets

expanded; 3) a novel method for the further expansion of

trusted neighborhood of users by merging feedbacks provided

by the trusted neighbors and finding similar users based on

the merged feedbacks; 4) detailed experimental evaluation

confirming the value of our proposed method in different

simulated real-life scenarios. For future work, we will

investigate how to accurately quantify the trust a user should

place on the merged feedback set based on the trust the user

has of the trusted neighbors. By doing so, we expect our

method to be more robust to highly malicious environments.
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